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A BRIEF WALK THROUGH THE FRACTAL LANDSCAPE 3
1. INTRODUCTION

Much of mathematics assumes a certain amount of “smoothness” in the objects
it studies. In calculus, the derivative of a function only exists if the function is
“smooth enough”. In geometry, the formulas we have for the areas and volumes of
shapes all assume that the shapes are as perfect as possible (so spheres are perfectly
round, lines are impossibly straight, etc.). In Fourier analysis, we concern ourselves
with functions that can be represented as a combination of smooth, trigonometric

functions. The list goes on.

Of course, there are good reasons why mathematicians do this. Things that are
“smooth” are generally easier to understand and manipulate in useful ways. As
well, many real-world things can be modelled /approximated pretty well by “smooth”
objects (e.g. finding volumes of objects that are close to perfect mathematical shapes
or calculating physical forces like gravity that can almost be modelled by simple
polynomial functions). So, in many areas of math, we do away with the minute
complications of the real world and restrict ourselves to impossibly perfect curves

and shapes.

While much of the world can be adequately modelled by nice, “smooth” things, there
are some things that resist such simplifications. Consider the branches of a fern,
which consist of rows of densely packed leaves. However, these leaves are themselves
rows of densely packed leaves. As are these smaller leaves. And so on. In fact, nature
houses some of the most complex shapes we know. Trees have branches that split
off of each other exponentially. Stalks of Queen Ann’s Lace flower into bunches of
petals that are themselves bunches of petals. Romano broccoli is composed of buds
that, when one zooms in, appear to be made of the same buds. Though we may not
be interested in analysing these specific plants, the point remains that many objects
exist in nature that are impossible to reduce down to simple, “smooth” geometric

shapes!.

It may seem plainly obvious that not all things in nature are simple, basic shapes.
However, it took a long time before mathematicians fully accepted and embraced this
fact. Why was that? How did mathematics expand beyond thinking about “nice”
objects? When did it happen? This project, at a high level, aims to explore the rise
of “roughness” in mathematical thinking. The main concept we’ll focus on is the idea
of a fractal—objects complex enough to elude succinct definition. We’ll investigate
some key mathematical constructions and discoveries that forced mathematicians to
reconsider their fixation with easily-imaginable, easily-manageable constructs. As

IWe'll define what constitutes a “smooth” shape later in this project with our discussion on Haus-
dorff dimension.
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well, we’ll discuss some of the techniques and ideas that arose out of these discoveries,

helping mathematicians make sense of roughness.

FIGURE 1. Fern leaves and Queen Ann’s Lace are just two examples
of plants that aren’t “smooth”. Good luck understanding these as
simple geometric shapes! Original image of the fern leaf is “Green Leaf
Photography” by Arunodhai V from Pexels. Original image of the
Queen Ann’s Lace is “White-petaled Flower” by Stanislav Kondratiev
from Pexels.

2. GRAPPLING WITH ROUGHNESS

To try and find the earliest instance of mathematicians studying “roughness” is a
fool’s errand. Some of the earliest examples we have of mathematical thinking in
humans are of our attempts to grapple with the chaos of the world around us. Early
humans etched tally marks representing prime numbers onto pieces of bone, likely
in an attempt to understand why these indivisible numbers occurred at random,
unpredictable intervals (Jackson [2017]). Egyptians devised formulas for calculating
the volumes of perfect geometric solids that approximated the complicated, real-
world structures they built (Triola [1973] 357-363). Ancient Greek mathematicians,
with their straight edges and compasses, worked harder than any mathematicians
before them to explain the world around them through the irrefutable proofs of
elementary geometry (Triola [1973] 357-363).

Depending on what we mean by “roughness”, we can go back as early as we’d like
in the history of math to find examples of mathematicians considering it. Out of
a necessity to start somewhere, we’ll choose 1827 as our starting point. This was
the year Robert Brown made a particular observation regarding pollen molecules
that sparked a tremendous amount of mathematical interest that persists to this

day (albeit in vastly different contexts, such as stock markets!)?.

2Robert Brown wasn’t necessarily the first mathematician to notice the behaviour we’re about to
describe, but he is the mathematician after which the phenomenon is named. See Spencer [1999].
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2.1. Brownian Motion - Part 1. While looking at pollen molecules that were
immersed in water, Robert Brown noticed that the molecules weren’t moving in
simple lines or curved paths. Rather, the molecules “jiggled” (et. al. [2010]), seeming
to choose their direction at random. This was quite the puzzling observation at the
time. Up to then, “[a]pplied mathematics had been concentrating for a century
on phenomena which were smooth” in nature (Hoffman [2010]), but here was a
natural phenomenon that was 100% rough. Because this type of “non-smoothness”
was a relatively novel thing to observe, much interest was generated in trying to

understand this peculiar particle movement.?

FIGURE 2. An example of the type of path a pollen molecule may
take when floating in water. Image taken from Wong [2015].

This type of random, jagged movement is called Brownian motion, and it can be
used to model much more than just molecules of pollen floating in water (see section
4.1). Eventually, it was understood that Brownian motion, at least in the original
context of pollen molecules, was caused by the erratic way in which water molecules
are constantly moving around and banging into each other (Mickelin [2017]). Even
in a perfectly still tray of water, the molecules that make up that water are always
moving. The pollen that Brown was observing happened to be small enough to be

affected by this movement, and so it was jostled around as it floated.

While an explanation of Brownian motion is certainly beneficial, it isn’t as useful
as we’d like for building a model to emulate its behaviour. Using the above in-

sight, the only way we could model Brownian motion is by simulating hundreds

3As a fun sidenote, Albert Einstein was among one of the people interested in understanding this
motion! See Mickelin [2017].
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and hundreds of hyperactive particles! A succinct mathematical model—a set of
equations or some set of laws—is ultimately what we’d like. However, as we men-
tioned earlier, mathematics had, up to this point, been focused mainly on smooth
phenomena—things wholly separate from the rough, jagged movement of Brownian
motion. Mathematicians didn’t yet have the tools for finding such a set of equations
or laws. We'll return to Brownian motion later in this project when we’ve built up

some terminology and ideas for working with rougher processes.

2.2. Weierstrass Function - Part 1. Fast-forward to 1872. Calculus—perhaps
the grandfather of all branches of math dealing with “smooth” things—was in the
process of being formalised and made explicit. Many ideas from calculus, such as
limits, differentiation, and convergence, had been intuitively understood since the
time of Issac Newton and Gottfried Wilhelm Leibniz (and possibly earlier, depending
on who one asks), but many of these concepts relied on a sort of faith that functions
behaved the way functions ought to behave. Karl Weierstrass, a mathematician of
the 19th century, believed that these “definitions” of calculus involved “too much

hand waving, and not enough detail” (Kucharski [2014]).

One such definition of interest was differentiability. By the modern definition, a
function f : A — B, A, B C R is said to be differentiable at a point x € A with a

derivative of ¢ € R if

Ve>0 3550 Vae A\ {2} ¢ —a]<d = [o- [T

C — < €.

This definition can be quite difficult to wrap one’s head around?, but the idea behind
it is straightforward. Informally, a function is differentiable at z if the function is
smooth at x—that is, the function has no sharp points, cusps, jumps, or anything
else that doesn’t look smooth. Thus, differentiability provides a sort of measure of
“smoothness”. If a function is differentiable on its domain, it’s said to be smooth.
Otherwise, it’s not. Furthermore, if we create a new function whose output at =
is the derivative of f at z, and this new function is also differentiable at z, then
the function f is doubly differentiable at x—even more smooth than merely being
“singly differentiable”. We can continue this process to define triply differentiable,

quadruply differentiable, etc., creating a hierarchy of smoothness for functions.

As was discussed in section 1, mathematicians like things that are smooth since they
typically have much nicer properties than things that are not smooth. This is true
of differentiability, too: functions which are differentiable behave much nicer than
non-differentiable functions. For example, a particularly nice result for functions,

4Perhaps looking at the raw definition of differentiability gives the reader some sense as to why
mathematicians informally worked with derivatives for so long.
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the Mean Value Theorem, applies only to functions that are differentiable. Even
at a high level, differentiable functions are much nicer to work with simply because
they’re easier to visualise. Having a visual representation of an object of interest is
one of the most valuable things a mathematician can have; it allows observations,
conjectures, and explorations led by “gut feeling” to arise more naturally. It’s no
wonder, then, that mathematicians have a tendency to prefer working with smooth,
differentiable functions; they look like nice, smooth curves when plotted, perhaps
comparable to the rolling hills of a grassy meadow. Non-differentiable functions, by
contrast, could have all sorts of weird behaviour, sharp edges, jumps, asymptotes,

and other features that are harder to imagine.

In fact, mathematicians loved working with differentiable functions so much in the
19th century that they made sweeping generalisations about all functions in an at-
tempt to make more functions “nice” functions. These generalisations weren’t based
in measurable definitions, and so there was no way to know for sure whether these
generalisations were even valid. However, they felt right to most mathematicians,

and so they were taken as fact.

One such generalisation was this: “for any continuous curve, [it’s] possible to find
the [derivative] at all but a finite number of points” (Kucharski [2014]). In simple
terms, mathematicians believed that all continuous® functions were smooth (expect
possibly at a few specific points). This agreed with the types of functions mathe-
maticians were concerned with at the time: simple polynomial equations for gravity,
the motion of pendulums, the velocities of objects thrown in the air. These were the
only functions on many mathematicians’ minds (Kucharski [2014]), and so to them,
they were representative of all functions. This generalisation was so ingrained in
mathematical thinking that there was a supposed “proof” of this fact by the French
mathematician André-Marie Ampere (Kucharski [2014]).

This “proof” severely bothered Weierstrass. With the lack of concrete definitions
within calculus at the time, it wasn’t even clear what was meant by a “continuous
curve”, so how could anything be said about them? To solve this issue, Weierstrass
took it upon himself to create proper definitions for many of the concepts taken
for granted by his contemporaries (Kucharski [2014]). With these definitions estab-
lished, he then went a step further and set out to find a function that completely
went against Ampere’s “proof”. Bernard Riemann had already claimed that such a
function existed all the way back in 1861 (Weisstein [2024h]), so it wasn’t entirely

unbelievable that a function like it was out there somewhere.

SContinuity was another property that didn’t have a formal definition at the time. They were
viewed as functions whose plots were a single connected curve.
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2

2

FIGURE 3. A plot of the function arctan(z) created using Desmos.
To a mathematician in the 19th century, all continuous functions were
comparable to curves like this.

In 1872, Weierstrass succeeded in finding his function: a function that was continu-
ous but whose derivative couldn’t be found at any given point®. In other words, the

function was continuous but not smooth.

What does this function look like? Well, its formula is given by

o0

COS k’ﬂ'x
flay = Y =,

9k
k=1

but this is a rather hard function to visualise given only the expression. A plot of
the function would make it much easier to see that f isn’t smooth. However, this
function was crafted in 1872. Weierstrass couldn’t just open Maple and get it to spit
out a plot. If he or any other mathematician wanted to plot this function, they’d
have to do it by hand. For a function as monstrous as this, that wasn’t going to

happen.

The fact that the function couldn’t be plotted didn’t matter to Weierstrass. He
had rigorous definitions to play with; his claim that f wasn’t differentiable didn’t
need pictures. His argument was a purely abstract one. Whether he could see the

function’s roughness or not, he knew it was there (Kucharski [2014]).

So, here was another non-smooth object that mathematicians didn’t know how to
manage. Worse than that, it was an object mathematicians didn’t want to manage.

Henri Poincaré called the function a literal monster” (Kucharski [2014]). Like with

SMore precisely, its derivative can only be found on a set of points with measure zero, meaning if
you were to smoosh all the points together, the interval enclosing them would be arbitrarily small
(see Weisstein [20241]).

"The author would like to make it known that they believe the term “monster” is quite endearing
for Weierstrass’ function, and it only makes them like it more.
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Brownian motion, we’ll return to Weierstrass’ function when we’ve built up some

handy tools and ideas for working with roughness.

2.3. Julia Sets - Part 1. The year is 1918. Gaston Julia and Pierre Fatou were in
the process of studying a particular kind of iterated system along with a correspond-
ing set (Spencer [1999]). At first glance, the systems they were considering appear
deceptively simple. We start with some rational function, say f(z). Importantly,
this is a function whose domain and codomain are the complex numbers (possibly
along with an extra point representing infinity) (Weisstein [2024c]). Then, we take
any starting value zy and send it through f(z). This gives us a new value z;. Now,
we take z; and repeat the process to get z,. Then, we repeat to get z3. And so on.
More formally, what we’re doing is generating a sequence of complex numbers using

the recurrence relation

Zn4+1 = f(zn)

What can we say about the sequence (z,)? Does it converge to some fixed value?
Does it diverge to infinity? Does it bounce around without ever settling down?
It turns out that all three behaviours are possible. To demonstrate this, consider
the rational function f : C — C, f(z) = 2%. If our starting point z; is such that
|20| < 1, then repeatedly applying f will result in a sequence of complex numbers
whose magnitudes get progressively smaller. If we use polar form to represent this
sequence, it’s clear that the sequence converges to 0. Conversely, if we choose a
starting point zy such that |zy| > 1, then the resulting sequence of complex numbers
will have magnitudes that get progressively bigger. Again, using polar form, it’s

clear that this sequence diverges to infinity.

This leaves us with the boundary case. What happens if |2y] = 1?7 Any complex
number with a magnitude of 1 can be represented in the form e, where @ is the
angle from the positive real axis to the ray connecting our point to the origin. If we

apply f to points of this form, we see that
f(eiH) — <€i0)2 — €2i9.

After applying f, we get another number whose magnitude is 1. Thus, in this case,
our sequence (z,) will neither converge to zero nor diverge to infinity. Instead, the
sequence of points will remain on the unit circle, possibly bouncing around in some
way. Other than the special cases where 22" = 1 for some n € N (meaning z, is a
2"-th root of unity), starting points zy where |z5| = 1 will result in sequences that
diverge not because successive magnitudes get larger, but because the points simply

never settle down to a fixed point.
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We see that this third case, the case where our starting points are on the “boundary”
of the two simpler cases, results in more interesting sequences. As any curious
mathematician would do, we should give out some names to more easily discuss
these concepts. Let J ¢ be the largest invariant subset of C under f. In other words,
jf is the collection of all starting points that correspond to sequences that don’t
diverge to infinity. We’ll say the Julia set of f, represented by J;, is the boundary
of J;, ie. Jp = dJ; (Weisstein [2024c])®.

Because the deciding criteria is so clear for which starting points give each type of
sequence behaviour, we can draw a diagram to visually depict the sets J rand C\ J ¥

for this particular function f:

FIGURE 4. A very exciting visual representation of the set jf for
f(z) = 2%, The black region represents points in the complex plane
whose corresponding sequences don’t diverge to infinity. The white
region represents starting points with corresponding sequences that
do diverge. The boundary of the two regions is the Julia set J;.

The resulting diagram is about as simple as it can get. The filled-in unit circle is J i
while the white space surrounding it is C \ J 7. Admittedly, this isn’t very exciting,
but it makes the Julia set J; fairly easy to envision; it’s simply the boundary, or

“edge”, of the circle.

If all Julia sets were as simple as this, then there wouldn’t be much to discuss. How-
ever, as we may have been able to guess, most Julia sets are far more complex. How
much more complex? Well, with the exception of a few particularly nice functions
(like f(2) = 2? — 2 and our function f(z) = 2?), most Julia sets are complicated
enough so as to be practically impossible to draw by hand. Thus, when Julia and
My, Js is the set of all points z € C such that, no matter h9w closely we zoom into
%z, there will always be a ball around z that contains both points inside J; and points outside Jy.

Symbolically, we can say J; = {z € C : Ve > 0 B.(z) € J; and Bc(z) € C\ J;}. We'll discuss
what it means to be on the boundary of a set in section 3.4.
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Fatou were investigating Julia sets, they found themselves in a situation similar to
Weierstrass back in 1872: they wielded a rough, complicated object they couldn’t
visualise. As such, Julia and Fatou had to develop tools specific to these sets in
order to make sense of them. Only with the introduction of the concept of fractals
did mathematicians have a general set of tools for working with objects as rough as

Julia sets.

Once again, we’ll return to Julia sets later in this project once we discuss the ideas
behind fractal objects.

3. EMBRACING ROUGHNESS

3.1. Even the Definition is Rough. Finally, we reach 1975, the year the term
fractal was coined (Snyder [2006] 1) by Benoit B. Mandelbrot. The word was used
to describe objects that possessed some sort of self-similarity, meaning parts of the
whole mimicked the whole. Immediately, we see similarities between this idea and
the objects of nature we mentioned briefly in section 1. The leaves of a fern mimic
the entire fern, and the bundles of petals on a Queen Ann’s lace flower look like
a miniature version of the entire flower. Then, using this informal definition of a
fractal, we could say that much of the roughness observed in nature is “fractally”
and employ the techniques of fractal geometry to tackle it. Though, as we learned
from Weierstrass back in 1872, we’d be better off having a rigorous definition for
fractals so we can make sound, watertight conclusions about them. How, then, do

we define a fractal?

This is where things get a little dicey. Mandelbrot, the mathematician responsible for
popularising fractals and fractal geometry, could be described as a bit of a wanderer.
The man was full of many ideas, but “[ijnstead of rigorously proving his insights in
each field, he . . . preferred to ‘stimulate the field by making bold and crazy
conjectures’ — and then move on before his claims had been verified” (Hoffman
[2010]). In other words, Mandelbrot often left his ideas only partially fleshed out,
leaving other mathematicians to do the “dirty work” of formalising them. As a result,
a precise definition for what constitutes a fractal is hard to find. The definition

changes depending on the source.

Sandra S. Snyder in their expository paper “Fractals and the Collage Theorem”
defines fractals as “mathematically generated pattern[s| that [are] reproducible at
any magnification or reduction . . . or at least [have] similar structure” (Snyder

[2006] 1). Many fractals indeed possess some level of self-similarity (as we’ll see
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later in the project), but too much emphasis on this property can obscure the heart
of what fractals truly capture: roughness. Brownian motion is often viewed as a
type of fractal specifically “because the boundary of the surface [or path] is very
rough” (Mickelin [2017]). The Weierstrass function is considered fractally because it
constituted an “intricate, beautiful structure” rather than one where the roughness
“would disappear when magnified sufficiently” (Kucharski [2014]). Ditto for Julia
sets. In all the examples we’ve considered so far, the key reason why mathematicians
apply methods from fractal geometry to study them is because other methods fail;

they’re too jagged and rough for “traditional” methods to work.

Thus, perhaps a more apt definition for a fractal is any object whose “roughness”
prevents it from being measured /manipulated via traditional geometrical or alge-
braic means. This definition certainly separates fractals from the usual smooth
objects of math, yet it remains imprecise. What exactly do we mean by roughness?
Intuitively, it’s clear what we mean, but mathematicians also had an intuitive un-
derstanding of what it meant to be smooth, and this notion led them astray. Or,
worse still, even if we’re given an object that’s sufficiently rough (in whatever sense
we eventually decide on), how can we know for sure that “traditional” methods
won’t work to measure them? What do we even mean by “traditional”? It seems

this definition may be more ill-defined than the last.

However, as it surprisingly turns out, having a concrete definition for a fractal really
isn’t all that important.® Many rigorous tools have been developed for understanding
the geometry and behaviour of fractals, and intuitively recognising a fractal is enough
to decide when to use said tools. This was the approach Mandelbrot used himself
when first encountering roughness in his studies. His early work involved studying
the behaviour of stock markets'®, but for this project we’ll focus on how he tackled

a seemingly innocuous question: how long is the coastline of Great Britain?

3.2. A Complicated Walk Along the Coast. 1967. Imagine we’re walking along
some path drawn in chalk on the street. The path is a single continuous curve—just
one stroke of chalk. If the path is a straight line, or at least close to one, then
following this path will be easy. Now, what happens if the person drawing this path
decides to get crafty and scribble knots into it (see figure 5)? Well, if the knots are
small enough, then they pose no problem to us. We can simply step over them and
continue down the chalk path. We can also ignore any jagged sections of the path,
provided the jags are small enough (again, see figure 5). The path forward will be
clear enough without having to consider these slight deviations.

9n any case, we’ll give one possible “rigorous” definition for a fractal in section 3.4.

10A5 an example of some of the economic work Mandelbrot engaged in, see Mandelbrot and Taleb
[2006].
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FIGURE 5. On the left, a nice, smooth chalk path. In the middle, a
devious chalk path with a knot. On the right, a crinkled chalk path.

Us humans walking down these different sections of the chalk path will notice very
little difference in the length of the path. None of the knots we step over force us
to walk any further. The length of the path is the same as if the knot wasn’t there.
The same can be said about any crinkly sections of the chalk path. Whether the

path is smooth or jagged, the distance we need to walk remains unchanged.

The same can’t be said about an ant following the chalk path. Knots and spikes
that are small to us are much bigger for ants (see figure 6). To skip these knots and
spikes would be to stray from the path. Thus, for an ant to follow the same knotted,

scrunched up chalk path, it must walk a lot further than a human would.

It would be even worse if we were a single-celled blob creature. Such a creature
would be so small that the flat surface of the chalk path would turn into a vast
stretch of peaks and valleys (again, see figure 6). This, clearly, would add even more

distance to our walk.

FIGURE 6. If we were ants following the chalk path, knots and crin-
kles would add a considerable amount of distance to our walk. If we
were single-celled blob creatures, the chalk itself would prove to be a
mountainous landscape.
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Depending on how small a scale we look, the length of the chalk path changes
considerably. This begs the question: how long is the chalk path? At what scale
should we measure its length? The human scale would be practical for us. It would
give us the “practical” length of the path, the distance we’d have to walk to get
from one end of the path to the other. The ant scale would be practical from a more
mathematical perspective. While knots and squiggles don’t add any additional
walking distance, they certainly add more length to the path itself. A loop-de-
loop path is far longer than a straight path. Thus, the ant scale would provide a
“truer” measurement of the path’s length. The blob scale, while certainly ridiculous,
is technically the most accurate out of the three scales. The mathematical path
represented by the chalk is an object purely in two-dimensional space. It doesn’t
take into account the physical materials required to construct the path. In our
three-dimensional world, however, drawing lines with chalk requires that the line
exists in three-dimensional space, and so the hills and valleys the blob must climb

over are just as much a part of the curve as any other aspect.

This problem may seem pedantic in nature, but the question of determining the
proper scale at which to measure length is one that’s been encountered in real-world
applications (Mandelbrot [1967] 636). Consider the profession of geography. One
of the things geographers may want to include on a map or reference is a measure
of the length of a certain coastline. Unfortunately, coastlines tend not to be simple
straight lines or curves. In fact, they're comparable to our chalk path example: full
of nooks, crannies, and jagged edges. Because coastlines are so similar to our chalk
paths, they suffer the same problem of their lengths changing depending on the scale

at which they’re measured.

By comparing the length data of various coastlines (see figure 7), we may notice that
the lengths of some coastlines seem to increase faster than other coastlines as the
scale decreases. For instance, the length of the west coast of Great Britain seems to
increase quite quickly as the scale decreases, while the coast of South Africa barely
changes at all. If we compare these two coastlines (see figure 8), one obvious reason
for this difference comes to mind: their difference in roughness. The reason our
chalk path grew longer at smaller scales was because of how “bunched up” it was
in some places. All the knots and crinkled sections added more length for the ant
and blob creature to traverse. So, it would make sense for the coastline with more
jagged sections (Great Britain) to measure longer at smaller scales than compared

to the smoother coastline (South Africa).
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In fact, this observation was verified empirically by the mathematician L. F. Richard-
son (Mandelbrot [1967] 636). Using gathered data for the lengths of several coast-

lines, Richardson devised a formula for relating the measured length of a coastline

and the scale at which it’s measured. If GG is taken to be the smallest length consid-

ered in our measurements (so that we ignore any knots or squiggles in the coastline
smaller than G), L(G) is the measured length of a coastline as a function of G, and

M and D are constants which change per coastline, then Richardson’s observation

was that

Importantly, Richardson noted that the constant D had some relation to how rough

L(G) = MG'™P.

a coastline appeared. For instance, he found that, for South Africa, D =~ 1.02,

FIGURE 8. On the left, the coastline of South Africa (the bottom
edge). On the right, the coastline of Great Britain. Images taken

from WorldAtlas.com.
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whereas for Great Britain, D ~ 1.25 (Mandelbrot [1967] 637). In essence, the
rougher a coastline, the higher its value of D. For small enough G, a higher value
of D means a higher value of L(G) under the formula, which matches our intuition
about rougher coastlines having more length at smaller scales. So, according to
Richardson’s findings, coastlines don’t really have an intrinsic length—it depends

on the scale at which you measure them.

While there isn’t much else to say about the question of coastline length, there’s still
the question of understanding Richardson’s relation. What does the value of D truly
represent? Is there some formal interpretation of what it means for one coastline to
be “more rough” than another? Mandelbrot believed that there was such a formal
interpretation. Rather than merely attributing each coastline a roughness measure
D, he declared the dimension of the coastline to be D (Mandelbrot [1967] 637).
So, rather than leaving dimensions as integer values (e.g. lines are one dimensional,
squares are two dimensional, etc.), he allowed dimensions to be fractional. The
dimension of South Africa’s coastline, then, was 1.02, while the dimension of Great
Britain’s coastline was 1.25. It wasn’t some arbitrary measure of roughness that
D was measuring, but rather a coastline’s dimension, something which could be

precisely determined rather than “eyeballed”.

Such an assertion may seem nothing less than insane. How can we possibly have
fractional dimensions? If a coastline is 1.25-dimensional, does that mean it exists in
a space with an z-axis and 25% of a y-axis? In fact, Mandelbrot’s idea of dimension
isn’t really related to the number of coordinates axes in a space. Rather, it relates

to the way in which objects scale in that space.

Consider a line segment of length x, and suppose we stretched it by a factor of s.
The new line segment, unsurprisingly, has a length of sz, and so the object grew by a
factor of s. As well, the original line segment of length = can be obtained by scaling
the new line segment by a factor of % This behaviour is how all one-dimensional
objects (i.e. all lines) behave, and so there should be a way to link the quantities
we just listed to the value of the dimension (i.e. 1). It turns out that there is, via a

slightly strange formula:
~log(s) _ —log(s) _ —log(s) _

log(L) — log(s™') ~ —log(s)

In some sense, this relation is what it means for an object to be one-dimensional.

When a one-dimensional object is stretched by some factor s, the resulting object
will be s times longer, and the original object should be %—th the length. This charac-
terisation of dimension may seem overly-complicated, especially for one-dimensional

objects, but it ends up generalising to higher dimensions quite nicely.
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Now, consider a square with side length x, meaning its area is 2. Suppose we

stretched it by a factor of s. Then, the new side length of the square would be sz,
meaning the new area would be s?22. Scaling the square by a factor of s scales the
area by s2. To obtain the original square from our current stretched one, we’'d again
scale by a factor of %, just as we did with the line segment. These are properties that
all two-dimensional objects share. We can link these quantities to the dimension by
the following relation:
—log(s?)  —log(s?) —2log(s)
log(%) - log(s™1) - log(s)

In general, if we have an object that’s grown by a factor of NV, and requires scaling
by % to get back to its original size, then its dimension is given by

— log(NV)

—log(s)

Mandelbrot treated this expression as the definition of dimension, rather than a

D=

formula that just so happens to coincide with dimension for the regular shapes of
geometry (Mandelbrot [1967] 637). This is the way in which he linked Richardson’s

value of D for coastlines to the concept of dimension: the two values of D, he

FIGURE 9. An example of scaling a line segment and a square by a
factor of 2. In the case of the line, it doubles in length. In the case of
the square, it quadruples in area. These differing changes in a shape’s
“size” can be thought of as an intrinsic property of all objects with
the same dimension as these shapes.
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asserted, were the same value. To argue this, he made use of a peculiar kind of

mathematical object called a “nonrectifiable self-similar curve”.

3.3. Nonrectifiable Self-Similar Curves. A rectifiable curve, according to Man-
delbrot, is any smooth curve with a well-defined length (Mandelbrot [1967] 637). A
nonrectifiable curve, then, is a curve that isn’t rectifiable. A perfect example of a
nonrectifiable curve is any of the coastlines mentioned in the previous section. At
different scales, the coastlines have different lengths, and so their lengths are not

well-defined and thus are nonrectifiable.

To establish his link between roughness and dimension, Mandelbrot needed a set of
nonrectifiable curves that were easier to work with mathematically. The coastlines he
was looking at displayed the exact sort of behaviour he wanted, but since the curves
weren’t defined in a controlled way, it was hard to argue that his idea was valid.
Thus, he turned to an object that had been first described by the mathematician
Helge von Koch: the Koch curve (Wolfram [2002] 934).

The Koch curve, much like the Weierstrass function, was an object cooked up specif-
ically to disprove the informal ideas and “proofs” mathematicians had regarding
smooth curves in the 1800s (Wolfram [2002] 934). However, unlike the Weierstrass
function which was essentially impossible to visualise, the Koch curve can easily be

visualised by virtue of how it’s constructed.

Start with a line segment of some specified length—usually chosen to be one for
simplicity. The Koch curve is created by repeatedly applying the following rule:
for every straight line segment, divide the segment into three equal pieces. Then,
construct an equilateral triangle whose bottom side is the middle line segment. Erase
the bottom line segment. The original straight line segment should now be replaced
with four new line segments, each a third the length of the original, that form a sort

of triangular spike.

Describing this process in words is much harder than simply showing the process
visually. Figure 10 shows the first four iterations of the construction process. We
can imagine that, if the process is carried out indefinitely, we’d end up with an
incredibly spiky object. The curve would be so spiky, in fact, that the entire curve
would be jagged, with no straight line segments remaining. In this way, it’s relatively
easy to see that, if we interpreted the Koch curve as a function, then it wouldn’t
be differentiable (i.e. smooth) anywhere. As well, it’s also easy to see that the
curve is continuous since the entire object is one long jagged line—there aren’t
any jumps or asymptotes on the curve. Thus, the Koch curve provides another

counterexample to Ampere’s “proof” that all continuous functions have derivatives
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FI1GURE 10. The first four iterations of the Koch Curve construction
process. Note that the triangles used here are not equilateral triangles,
but the resulting curve is essentially the same, just stretched slightly.

at all but a finite number of points (see section 2.2). As an added bonus, unlike the
Weierstrass function, the Koch curve can be drawn (given a bit of patience) on a

piece of paper.

Of course, we haven’t actually proven that the Koch curve is continuous and/or
nondifferentiable. We'd need to use the definitions for that. In section 3.4, we’ll
introduce the tools required for showing that something like the Koch curve is con-
tinuous and nondfferentiable (as well as the tools for showing that the Koch curve
is a well-defined object). For now, we’ll concern ourselves with a different property

of the Koch curve: its dimension.

If we applied Mandelbrot’s definition of dimension to the Koch curve, what would
we get? Well, imagine we scale the curve up by a factor of 3. So, if the left tip of the
curve originally started at x = 0 and the right tip ended at x = 1, then the scaled up
right tip would end at x = 3. If the Koch curve were a normal line, we’d expect the
length of the curve to increase by a factor of 3. However, this isn’t what happens.

The Koch curve has an extra “bump” in its middle which adds more length to the
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curve. In fact, we can actually break up the scaled Koch curve into four smaller
segments, each one an identical copy of the original curve (see figure 11). Because
it has four segments, scaling up the Koch curve by a factor of 3 scales its length by
a factor of 4, not 3 (since the “middle third” of the curve is actually composed of
two-thirds worth of length due to the bump).

wf

FiGURE 11. If we split the Koch curve at the grey dots, we get four
identical smaller curves. If we imagine splitting the “final” Koch curve
(i.e. the result of applying the construction process indefinitely) in the
same way, the four smaller curves would be identical to the larger
curve.

To scale the curve back to its original size, we scale by % as we would for any shape.
Thus, using Mandelbrot’s definition of dimension, the Koch curve has a dimension

of
~ —log(4)

~ —log(3)
However, there’s another, equivalent way to obtain this number. Consider again the

~ 1.2619.

construction process detailed in figure 10. For simplicity, we’ll say that the original
line segment at step 0 has length 1. At each step s of our construction, our curve
consists of 4° line segments, each one a length of (%)S Thus, the total length of our
curve at step s is given by (%)S. Rearranging this expression, we get that

,M)

log(4)
1\° 1\® /oy (1\° 1\ Ee | 1\ 1)U
—_ :45 —_ = <3 105(3)) —_ = —_ —_ = —_
3 3 3 3 3 3

Notice that (%)8 is the length of the smallest line segment in the Koch curve at

step s. Then, using Richardson’s notation for measuring the lengths of coastlines,

we can say G = (%)S since the smallest line segment in a step of the Koch curve is

the smallest length considered when measuring the length of the curve. Then, our
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expression simplifies to

1— 103(4)

s log(3>) log(4
(l) — Gl — @D,

3
So, the length of the Koch curve at step s is given by G' =P, where D is the dimension

given to the curve and G is the length of the smallest line segment being considered.
This is the exact formula Richardson derived empirically for the lengths of coastlines,
just without the extra scaling constant. However, in Richardson’s formula, the
constant D was a sort of measure of roughness for the given coastline. Here, D
represents the dimension of the Koch curve. Comparing the two, it seems that
dimension and “roughness” play the same role in our expressions for length. In fact,
this holds true for many nonrectifiable curves (Mandelbrot [1967] 637), not just the

Koch curve.

Seeing this connection between Mandelbrot’s definition of dimension and Richard-
son’s measure of roughness, Mandelbrot could then argue that a curve’s roughness
could be measured in terms of its supposed dimension. However, Mandelbrot wanted
a way to make the connection even stronger. He’'d shown that the dimension of a
curve served the role of Richardson’s roughness constants for these peculiar nonrecti-
fiable curves, but was that enough to show that it also applied to natural coastlines?
What if the geometry of the world’s beaches behave differently from these mathe-

matical models of roughness?

It turns out that they don’t, at least not in any way relating to what Mandelbrot
wanted to show. Using a probabilistic process for constructing “random” jagged
objects like the coastlines Richardson had studied, Mandelbrot argued that the
coastlines of the world behaved no differently than these “toy” models he had used
(Mandelbrot [1967] 638), and so the roughness of coastlines can also be linked to

the notion of dimension.!!

Therefore, rather than considering the increasing value of a curve’s length as the scale
is decreased, Mandelbrot showed that mathematicians can quantify the “roughness”
of an object by using its “dimension” as it relates to properties of scaling. To
differentiate this definition of dimension with other, more conventional definitions,
this quantity is often referred to as the capacity dimension, fractal dimension, or
Hausdorff dimension (Weisstein [2024a]). This project will use the term fractal

dimension.

HThe specifics of this probabilistic construction for coastline-like objects is beyond the scope of
this project, though it can be succinctly described as choosing a series of these “toy” models at
random and combining them in such a way as to form “natural” jaggedness as seen in real-world
coasts. See Mandelbrot [1967], pages 637-638.
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An object’s fractal dimension can actually be used as a sort of quantifying value for
fractals. So, rather than having to decide for ourselves whether an object “counts”
as a fractal or not, we can look at the fractal dimension and get a definite answer.

However, to discuss that, we need to get a little more technical.

3.4. Metric Spaces. In section 3.3, we constructed the Koch curve and calculated
its fractal dimension. This process required that we consider the “final” step of the
Koch curve construction process—that is, we had to consider how the resulting ob-
ject would look/behave if we carried out an infinite number of steps. More formally,
we were required to consider the limit of the construction process as the number of
steps went to infinity. Limits, much like derivatives, have a very precise mathemat-
ical definition to ensure that things are done correctly. Our method of handling the
limit of the Koch curve construction process was very much not precise. We didn’t
even mention the word “limit”! How, then, can we be sure that any of our analysis

was correct if we made use of a limit we didn’t derive rigorously?

In fact, how can we even be sure that such a limit exists? The usual definition of
a limit assumes that we’re dealing with sequences or functions of numbers. The
Koch curve is certainly not a sequence nor a function of numbers, at least not in
any obvious sense. Rather, it’s a set of lines in a two-dimensional plane. If we did
try and rigorously take the limit of our construction process, it isn’t clear how the

traditional definition of a limit would work.

Thankfully, there exists a type of space more general than the real numbers in which
limits can be taken, and this space lends itself quite naturally to shapes as opposed
to numbers and functions. Once we understand this type of space, we’ll have the

tools we need to properly handle the limit of the Koch curve creation process.

The type of space in question is called a metric space. A metric space (X,d) is an
arbitrary set X, along with a metric d : X x X — R. The metric d satisfies the

following four properties:
(1) For all 2,y € X, d(z,y) > 0.
(2) For all z,y € X, d(z,y) = d(y, x).
(3) Forall z,y € X, d(z,y) =0 = x=y.
(4) For all z,y,z € X, d(z,y) < d(x,z) + d(z,y).

The definition of a metric space is rather abstract, but its interpretation is quite
straightforward: a metric space is a set of objects along with some way to measure

“distance” between objects. The value of d(z,y) for points z,y € X is taken as
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the distance between x and y. The four properties the metric d must satisfy ensure
that the distances we have between objects actually makes sense as distances (e.g.
the distances are nonnegative, they approach zero as the points get closer together,
etc.).

Using a metric space’s metric, we can redefine the notion of a limit. Given a metric
space (X,d) and a sequence of points (z,) within X, we say that the sequence

converges to a point x € X (i.e. the limit of the sequence is x) if
Ve>0 INeN Vn> N d(z,,x) <e.

This definition is practically the same as it is for sequences of real numbers or
functions, except we measure the “closeness” of points in the space using a general
metric function instead of the absolute value of the difference between numbers.
However, this definition is much more powerful as the points in X can be any
abstract objects we want, so long as we have a way to measure some kind of distance
between them. For our Koch curve, we just need to find the appropriate metric space
in which the curve lives, and then show that the sequence of curves we get from the

construction process converges to the “final” Koch curve.

Because the Koch curve sits in a two-dimensional plane, and because we can draw it
on a piece of paper (at least, we can partially draw it using the construction process),
an obvious choice for a space to put the curve in would be R?. For example, at step
zero, the Koch curve would be the set of all points in R? that sit on the line between
the points (0,0) and (1,0). At step one, it would be the set of all points that sit
between the four lines going from (0, 0) to (%, 0), (%, 0) to (%, %?:), (%, \/Tg) to (%, O),
and (£,0) to (1,0).

As well, we know how to measure the distance between two points in R? (by sub-
tracting them and calculating the length of the resulting vector), so our metric to
use is also obvious. Thus, we can say that the Koch curve is a set of points (given

by line segments) within the metric space (R?, d), where d(Z, ) = || — 7]|.

Now, to show convergence of the Koch curve creation process, we can’t directly use
the metric space (R?, d). Remember, the objects we're interested in showing con-
vergence for are sets of points in R?, not points in R?. The definition of convergence
for metric space doesn’t allow us to directly show convergence for collections/sets
of objects within a metric space; we have to work with single points. So, if we want
to show convergence of the Koch curve creation process, we actually have to create

another metric space, one whose objects of interest are sets of points in R2.
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This, however, raises an interesting question: if we want to make a metric space
whose objects are sets, how to we measure distance between them? There are many
ways to do this, though one way that has proven useful to mathematicians is to use
the Hausdorff metric. To use the Hausdorff metric, we have to be a bit more specific
about what sets of points in R? we wish to use for the objects in our metric space.

Let’s introduce a few more definitions to help us out.

For any given metric space (X, d), we’ll say that the boundary of a subset A C X
designated as 0A, is the set of all points in X that, according to the metric d, are a
distance zero from both the set A and the complement X \ A. Thus, the boundary
of a subset is literally the boundary between the set itself and everything outside of

the set. Not much to explain here.

For the same metric space (X,d), we'll say that a subset A C X is closed if it
contains its boundary. Symbolically, A is closed if 0A C A. So, a set is closed if
it has its own boundary “closing it in”. In this way, sets are almost like plots of
land. To close a piece of land off, we need to fence it in. To close a set, we need its

boundary.

Similarly, we’ll say a subset A C X of the metric space (X,d) is open if its com-
plement is closed. Open sets, then, can be thought of as the opposites of closed

sets.

For the same metric space (X, d), we’ll say that a subset A C X is bounded if there
exists some point x € A and some finite € > 0 so that every point in A is at most a
distance € from x. Again, this definition isn’t too difficult to parse. If every point is
at most a distance € from z, then the entire set A can be contained in an enclosing
ball of radius €, meaning the set is bounded by that enclosing ball; everything is

contained within some finite space.

Unfortunately, the next definition is a little more difficult to understand intuitively.
For any given metric space (X, d), we’'ll say that a subset A C X is compact if any
sequence of points in A has a convergent subsequence whose limit is in A.!? Unlike
the previous definitions, there isn’t an immediate visual that comes to mind when
trying to imagine what a compact subset would look like. Thankfully, the sets we're
most concerned about in this section are subsets of R?, and there’s a particularly

nice result that makes interpreting compactness much easier for these subsets.

2There are actually several different definitions of compactness for metric spaces. The one given
here is for “sequential” compactness. No matter the definition used, however, all the same results

apply.
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FIiGURE 12. Top: two sets, represented by the grey shading and the
black boundary. The left set is closed because it contains its own
boundary. The similar set on the right is not closed because a piece
of its boundary is missing. Bottom: a set represented by black points.
This set is bounded because a ball of some finite radius can be drawn
around it to enclose it.

The Heine-Borel Theorem says that a subset of R? (and, more generally, a subset of
R™) is compact if and only if it’s closed and bounded. So, for our purposes, being

compact simply means you're a closed and bounded set.

Now, with these definitions, we can define an appropriate metric space on which the
Hausdorff metric can be used. For any metric space (X,d), define the Hausdorff
space, denoted as (X ), as the set of all non-empty compact subsets of X. So,
for the metric space (R?, d) where d is the “usual” distance between vectors, then
A (R?) is the set of all non-empty subsets of R? which are closed and bounded.
One way to think about . (R?) is the set of all non-empty subsets of R?* which are
“small”, in some sense. It contains all the finitely-sized subsets of R? (except the

empty set) which are self-contained enough to contain their own boundaries.

Given a metric space (X, d) with corresponding Hausdorff space 52 (X), we define
the Hausdorff metric, denoted as d -, as the distance between two sets A, B €
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(X)) given by the following expression:
dx(A,B) = max(sup inf d(a,b), sup inf d(a,b)) :
acAbEB beBacA
This is a rather complex expression, but it encodes a simple idea. The Hausdorff
metric between two compact sets measures how “isolated” a point from one set can

t.13 To make the idea more clear, let’s imagine ourselves as a

be from the other se
point in A. How far away could we be from the set B? Denote this distance as
d,. Now, imagine we’re a point in B. How far away could we get from the set A?
Denote this distance as d,. The Hausdorff metric is the maximum of d, and d;. It’s
the furthest possible distance a point from either set could put between it and the

other set.

A

FIGURE 13. Two sets A and B. The starred points represent potential
candidates for points in each set that are as isolated as possible from
the other set. The Hausdorff distance between A and B would then
be the maximum of these two distances.

Using Hausdorff spaces and Hausdorff metrics, we can construct a metric space that’s
suited for handling the limit of the Koch curve construction process. Let (R?,d) be
a metric space with d being the “usual” distance between vectors. We've already
explained how each step of our Koch curve creation process produces a set of points
within this metric space. It’s clear to see that these sets of points are bounded
(since each step of the construction process can be drawn on a finitely-sized piece
of paper). As well, since the Koch curve is composed of only line segments, these
sets must contain their own boundaries. Lines have zero thickness, so any points on
a line must be zero distance from the points off the line. As well, only points on
the line can have zero distance from it for the same reason. Thus, every step of the
Koch curve construction process produces a compact subset of R?, meaning each
mwe restrict our attention to compact sets is so that sets that should be distinct are
distinct. If we considered sets that weren’t compact, then it would be possible for two different

sets to have a distance of zero between them under the Hausdorff metric. Consider, for instance,
the intervals (0,1) and [0, 1]. Under the Hausdorff metric, these sets would be the same.
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set is an object in J#(R?). So, a fitting metric space to show convergence for the

construction process would be (J(R?), d).

In fact, if we understand what the Hausdorff metric is measuring, then it’s rather
obvious (intuitively speaking) that the Koch curve construction process really does
converge to some final, infinitely-spiky object. At each step of the construction
process, the only thing we change about the curve is how spiky it gets—we “push
up” more of the flat segments into spikes. Furthermore, the spikes we create get
smaller and smaller with each step, protruding less and less from the original line
segments from which they’re standing. So, if we imagine comparing the curve at
one of these steps to the theoretical “final”; infinitely-spiky Koch curve object, the
maximum distance a point on one curve could put between itself and the other
curve gets smaller with each new step in the creation process since the spikes get
closer and closer to the “infinitely small” spikes of the final object. Importantly, this
maximum distance can never grow bigger as the steps increase. Using the definition
of convergence, then, for any ¢ > 0 given, there exists some step N such that, for all
steps n > N, the Koch curve at step n is no more than a distance e from the “final”
Koch curve, according to the Hausdorff metric. Thus, the sequence of Koch curve
construction steps really does converge to the final, theoretical Koch curve. We can

rest easy knowing that the object we’ve defined is valid.**

One last thing worth touching on before we move on to the next section. In section
3.3, we briefly mentioned the idea of using an object’s fractal dimension as a way
to distinguish fractals from “regular” objects. How exactly do we go about doing
that? Well, if an object’s fractal dimension is different from the “usual” notion
of dimension, then there’s a good chance that the object in question is “rougher”
than a normal object ought to be (due to the connection between dimension and
roughness set forth by Mandelbrot). So, one way to rigorously define a fractal is
to declare any object whose fractal dimension is different from its “usual” notion
of dimension as a fractal. The “usual” notion of dimension we use is the Lebesgue

covering dimension (Weisstein [2024a).

The Lebesgue covering dimension makes use of the notion of an open cover. A cover
is a collection of distinct, non-empty subsets of some set X whose union contains X
(Weisstein [2024b]). For instance, given the set X = {©, =, £}, one possible cover
could be {{©},{§}, {=}}. Another cover could be {{=e $},{©, $}}. An open
cover is a cover of open sets. For any cover of a set X, the order of the cover is the
HMOf course, the explanation given here is a little too loose to be considered a formal proof. However,
not much is required to make the argument rigorous. All that’s needed is a proper quantification

of how close each step in the construction process gets to the final curve, as well as some formal
description of this final curve. It’s annoying, but not necessarily “difficult”.
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maximum number of times that any one element of X appears in the elements of
the cover. For example, in the first cover we gave for X, the order would be 1, as
each element only appears once: one in each element of the cover. In the second
cover for X, the order is 2, since §) appears is both elements of the cover. A cover
A is said to be a refinement of another cover B if, for every element a € A, there
exists some b € B such that a C b. Thus, all the elements of the refinement are

subsets of elements of the original cover.

With all this terminology established!®, we say that the Lebesque covering dimension
of an object/shape is m if, for every open cover of the object/space, there exists a
refinement to that open cover with order at most m-+1 (Weisstein [2024d)). If no such

m exists, then the space is said to have infinite Lebesgue covering dimension.

Once again, this is a fairly abstract definition. However, the Lebesgue covering
dimension of a “regular” object/space is the same as the usual dimension. So,
lines have a Lebesgue covering dimension of 1, squares have a Lebesgue covering
dimension of 2, any space R"™ has a Lebesgue covering dimension of n, and so on.
For our purposes, then, the Lebesgue covering dimension is synonymous with the
usual notion of dimension: mainly how many coordinates one needs to index all the

points in the space.

Using both the Lebesgue covering dimension and the fractal dimension, we can show,
under our given “rigorous” definition of fractals, that the Koch curve is indeed a
fractal. No matter what step we’re at in the Koch curve creation process, the curve
is composed of a bunch of straight line segments stitched together end-to-end. Thus,
the Koch curve is nothing more than an extremely-crinkled line, meaning we only
need one coordinate to index the points on it. This coordinate could tell us, for
instance, how far along the line segments we’'ve walked, starting from the leftmost
point. So, the Lebesgue covering dimension of the Koch curve is 1. However, from
our calculations in section 3.3, we showed that the fractal dimension of the Koch
curve is about 1.2619, which is certainly greater than 1. Thus, the Lebesgue covering
dimension and the fractal dimension are different, and so the Koch curve is, by our
definition, a fractal. The same reasoning can be used to show that the coastlines

Richardson was surveying are also fractals.

3.5. Iterated Function Systems. Section 3.4 laid down the foundation for metric

spaces: spaces that are particularly-well suited for rigorously working with rough,

5Unfortunately, there isn’t really a more elegant way to introduce these definitions in the context
of this project. Topology is a wide, expansive field, and to motivate each concept in a satisfying way
would require making this project much longer than it ought to be. The specific ideas introduced
here aren’t essential to the goal of this project, however, so don’t be alarmed if all this new
information feels rushed or is difficult to understand. It’s provided solely for completeness’ sake!
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fractal objects. However, as is evident from the complicated definitions and construc-
tions, working with fractals in this way is incredibly cumbersome. Many fractals
are constructed using similar creation processes to that of the Koch curve, requiring
some simple transformation process to be repeated over and over again ad nauseam.
Does that mean that, for every fractal we want to create, we have to break out the
definition of convergence for metric spaces, find a suitable metric space in which
to describe our fractal, and prove that the limit exists rigorously before we can say

anything about the fractal itself? If so, that would require a lot of work.

The answer is a welcome no. There are a few handy theorems we can make use of to
bypass the whole “taking a limit” thing and jump straight into analysing the fractal
object itself. It requires describing our fractals as iterated function systems, or IFSs.
Once we translate our fractal construction processes into the language of IFSs, a
particular set of theorems will save us from having to take any limits by definition—

the theorems will guarantee that our resulting fractal object is well-defined.

[FSs make use of a special type of function called a contraction. Given two metric
spaces (X, dx) and (Y, dy), a function f : X — Y is a contraction if, for all a,b € X,
we have that

dy(f(a), f(b)) < k- dx(a,b)
for some constant 0 < k < 1. The constant k is called the factor of contraction.
Contractions can be thought of as “squishing” input points together when the func-
tion is applied; the points will end up closer to each other after the function is

applied.

One very important theorem involving contractions is the Contraction Mapping
Theorem, which says that any contraction from a complete metric space to itself
has a unique fixed point, and this unique fixed point is approached by repeatedly
applying the contraction to any point in the metric space. A complete metric space
is one where every Cauchy sequence within the metric space is a convergent sequence

within the space. A Cauchy sequence (z,) is a sequence such that

Ve>0 AN €N Vn,m > N d(x,,x,) <,

where d is the metric of the given metric space.'6

160nce again, this is another set of definitions that would take a long time to properly motivate.
In short, Cauchy sequences are sequences where the terms get closer together as the sequence
continues. If we know that Cauchy sequences always converge, then we can show convergence of
sequences without having to know where exactly they’re converging, providing a potentially easier
way to show convergence. This is why spaces where all Cauchy sequences converge have their own
special designation; it’s a powerful property to have.
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Maybe we can see a connection between the Contraction Mapping Theorem and our
quest to show the Koch curve construction process produces a well-defined object.
If our Koch curves were described inside a complete metric space, and the iterative
process we applied to the curve at each step was a contraction, then this theorem
would’ve guaranteed that the “final” Koch curve was indeed well-defined without us
having to go through the effort of using the definition of convergence. This theorem
is the main reason we’d like to describe our fractals as IF'Ss. It saves us from having

to use the definition of convergence!

So, what exactly is an IFS? We define an IFS on a metric space (X, d) as a finite
set of contractions w; to wy, w; : X — X. The contractivity constant of the
IF'S is the largest factor of contraction of all the IF'S’ contractions. Under an IF'S,
completing a step in some fractal’s construction process is equivalent to applying
all the contractions on some predefined subset of X, then taking the union of the
resulting outputs to replace the predefined subset. Symbolically, if we started with
some subset Sy C X, then S, = UzN:l w;i (Sy)-

It helps to discuss an example here. Consider the Sierpinski triangle, one of the
most well-known fractals. There are numerous ways to construct this fractal, but
we’ll describe a process similar in spirit to the geometrical construction of the Koch

curve explained previously.

Start with an equilateral triangle. At each step of the construction process, remove
an inverted triangle from all equilateral triangles in the figure. Repeat ad nauseam.
The limiting object of this process is a triangle with an infinite number of triangles

punched out of it.

FIGURE 14. The first few steps of the Sierpinski triangle construction process.

Once again, if we’d like to rigorously prove that our construction process results
in a well-defined object, we’d have to go through the steps outlined in section 3.4
to show convergence of our object in some appropriate metric space (which would
most likely be (' (R?),d ), just like for the Koch curve). However, if we describe
our construction process as an IFS, then the tools introduced below can be used to
skip all that. By applying a few theorems, we’ll know for sure, without having to do

any complicated manipulations, that our fractal object is well-behaved in the limit
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of the construction process. The question then becomes: how do we translate this

construction process into an IFS?

The trick is to encode one of the object’s properties within the IFS’ mappings.
With the “final” Koch curve object, we could split up the curve into four smaller
pieces, each one an identical copy of the original curve. For the “final” Sierpinski
triangle, we can split up the object into three smaller pieces, each one an identical
copy of the original object. To represent this property with an IFS, we can use
three mappings, each one mapping the entire object down to a smaller version of
itself. If we place these smaller pieces in just the right places, we’ll be mimicking the
Sierpinski triangle’s self similarity, and the resulting IF'S should generate the fractal
we want.
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F1GURE 15. Just like with the Koch curve, we can split up the Sierpin-
ski triangle into smaller pieces. Using the “final” Sierpinski triangle,
these smaller pieces would be identical to the original triangle.

There are multiple ways we could create a set of three contractions that do this.

Here’s one such set, which acts on R?:

S
— B) 0—)
wo(T) = 8 RE
L 2 |
o o
o1z 0L |3
wy (%) = 0 lx—i— ol
L 2 | L
o
L3 0. |E
wy (%) = N
0 3 2

We can visualise what these mappings are doing by taking the unit square
{(z,y) ER*:0< 2 < 1,0 <y <1} € H#(R?)

and applying our three mappings to it, then taking the union of the resulting sets
as our new starting set. Repeating this process multiple times produces the sets
shown in figure 16. We see that as more and more iterations are performed, the
resulting set gets closer and closer to the Sierpinski triangle, as we wanted. Despite
the process of specifying a fractal this way being more involved, the benefit is that

we know 100% that the resulting object is a true, well-defined object. As well,
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with the mathematical framework of metric spaces and contractions placed atop
our fractal, we can make far stronger observations and conclusions regarding the

resulting figure.

First, though, we should explain how exactly the IFS approach lets us skip the

“rigorously proving the limit” part. It turns out that, given an IFS {wy, - ,wy}

L) LT L
LLLf\LLLL
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FIGURE 16. The initial square, the first, the second, the third, and
the tenth iterations of the Sierpinski triangle IF'S. The shading is used
to show which of the three mappings is responsible for each part of
the shape. Lower left is wy, lower right is wy, and top is ws.

for a metric space (X, d), the mapping w : S (X) — (X)) defined by

is a contraction on . (X) with factor of contraction equal to the IFS’ contractivity
constant.!” Notice that w is simply the fractal construction process encoded as
a single function. Rather than applying each contraction of our IFS individually
to some compact subset of some metric space, then taking the union of all the
resulting sets, we're applying a single mapping to a single object in the corresponding
Hausdorff space of our metric space. Thus, if 5#(X) is a complete space, then by
the Contraction Mapping Theorem, w has a unique fixed point in #°(X) obtained
by repeatedly applying w to some starting set. This fixed point is special enough to

have a name: the attractor of the IFS.

Conveniently, if (X,d) is a complete metric space, then (J(X),d) is also guar-

anteed to be a complete metric space.'®

These results are great news! If we can encode our fractal construction processes
as iterations of contractions on some complete starting space, then the Contrac-
tion Mapping Theorem guarantees that the limiting object of our process is well-
defined!

One question immediately arises from all this: how do we construct an IFS that
generates a specific fractal? The Koch curve was created to be connected and infin-
itely spiky, and so the resulting construction process reflected that desire. However,
the process we used was admittedly a bit imprecise (which was why we had to
17This result is proven by manipulating some inequalities that hold for the Hausdorff metric. The

details get a bit messy, so we’ll omit them for this project.
18For a more thorough discussion of why this should be true, see Henrikson [1999].
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prove the process actually converged to something meaningful!). The language of
IFSs doesn’t permit such impreciseness: our fractal construction process must be
described in terms of contractions from a complete metric space to itself. If we have
some fractal shape we’d like to translate into an IFS, how should we go about doing
that?

The Collage Theorem is one tool to do this. Say we're given a complete metric space
(X,d) and an IFS of contractions w; to wy from the metric space to itself, where the
contractivity constant of the IFS is ¢ < 1. By the Contraction Mapping Theorem,
there exists some fixed point z € 5 (X) for this IFS. Then, for any y € J(X), we
have that

do(y,7) < i o (y,0(y)),

where w is given by the union of all the IF'S” contractions (H. E. Kunze [2006] 3).
What is this theorem saying? In a nutshell, the Collage Theorem says that “[i]f

the [fractal] you want to get is called L, then you need to find functions [w;] such
that [w(L) = L]. Then no matter what initial image you start with, if you iterate
[w], you'll ‘eventually’ get L” (Snyder [2006] 11). An added stipulation is that “[i]f
[@(S) = S] and S contains L, then S = L. That is, no larger set is ‘fixed’ by [w]”
(Snyder [2006] 11). Without this added condition, trivial functions like the identity
function will technically satisfy our condition, but they clearly won’t generate any

sort of interesting fractal under repeated iteration of the map.

We already implicitly used the Collage Theorem when we created an IFS for the
Sierpinski triangle. The Sierpinski triangle is composed of three smaller versions of
itself, each arranged to form a bigger version of the same self-similar object. The
mappings we specified for our IFS above encoded this exact self-similarity. Then,
by the Collage Theorem, the fixed point guaranteed by the Contraction Mapping
Theorem ended up being the Sierpinski triangle. Using this same principle, if we
have some fractal image we’d like to represent as an IFS, we simply need to find a
set of mappings such that the fractal is unchanged under those mappings. Then,
no matter what we use as a starting set, repeated iteration of the mappings will

eventually transform the set into the fractal we want!

Now, it may seem like restricting our attention to IFSs is limiting. What if there
are fractals we wish to analyse that can’t be represented as an IFS? It’s certainly
true that not every rough phenomena we encounter can be translated into a set
of simple, deterministic contractions. Brownian motion, for instance, relies on a

random process almost by definition, so we can’t use some predetermined set of
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contractions to describe all Brownian motion.!® And, indeed, any sort of fractal
that doesn’t possess the “perfect” self-similarity of objects like the Koch curve are
more difficult to describe using IFSs, as they rely on some amount of randomness

in their construction.

However, these “perfect” self-similar fractals are often the starting point for under-
standing more “random” fractals, as we saw in section 3.3 when we used the Koch
curve to understand Richardson’s measurement of roughness for coastlines. And,
by the Collage Theorem, so long as we recognise the symmetries of a perfectly self-
similar fractal, there’s guaranteed to be a set of contractions whose corresponding
attractor is the fractal object of interest. So, although IFSs can’t perfectly describe
every fractal object out there, they serve as a good starting point for grappling with
roughness and understanding the properties that other, more “random” fractals may

have.

3.6. de Rham Curves. To close off our introduction to metric spaces and IFSs,
let’s again consider the Koch curve. Although we originally described it as a purely
geometrical construction, the Collage Theorem says we can represent it as the at-
tractor of an IFS. In fact, the Koch curve turns out to be a single element of a
continuum of fractal curves called de Rham curves, originally described by Georges
de Rham in 1957 (Vepstas [2006] 1). Much like the Koch curve, all de Rham curves
are continuous yet are infinitely spiky, meaning they aren’t differentiable on all but
a finite number of points (Vepstas [2006] 1).

The idea behind de Rham curves is straightforward. Assume we have two contrac-
tions wp, w; : R? — R? where the fixed points zg and z;, respectfully, lie in the
basin of attraction of the other map. A basin of attraction is simply the set of
points around a fixed point such that, under repeated iteration of the contraction,
the points will approach the fixed point (Israel [2010]). For our contractions, the
basin of attraction will be the entire space R? since a contraction, by definition,
contracts the entirely of its domain. On top of this, we also assume that each
contraction applied to the other map’s fixed point will result in the same point.

Symbolically,

wo(z1) = wq (). (1)

Under these assumptions, we then construct a curve between xy and x; by consid-

ering the fixed points of all contractions of the form
Ct(x) = Wiy O Wy © - (x>7

190 section 4.1, we’ll discuss some ways that mathematicians and physicists model Brownian
motion.
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where ¢ is a real number on the interval [0, 1], and ¢, denotes the n-th digit after
the decimal place of the binary representation of t. For example, if t = %, then the
binary representation of ¢ would be 0.01000..., and so t; = 0, t, = 1, and all ¢; with
© > 2 would be 0. The collection of all the fixed points for each ¢;, with t being a
real-valued parameter from 0 to 1, forms the de Rham curve corresponding to the
maps wy and w,. Georges de Rham proved that, as a function of ¢, the curve of all
fixed points for each ¢; forms a continuous curve that is nowhere differentiable, just
like the Koch curve (Vepstas [2006] 1).

The condition imposed by equation 1 ensures that differing representations of the
same binary number yield the same value under the mapping ¢;. For example, if
t = %, then ¢ = 0.1000... and ¢t = 0.0111... are both correct representations in
binary. However, due to the condition of equation 1, the resulting maps ¢; would
behave identically. Without this condition, our curve of fixed points wouldn’t be

continuous.

Due to how de Rham curves are constructed, we can actually show the self-similarity

of the curves in a fairly easy way. For any point ¢ € [0, 1], we have that
1
p(t) = wo(p(2t)) for t € {O, 5] , and

p(t) = wy(p(2t — 1)) for t € B, 1] ,

where p(t) is a point on the resulting de Rham curve parameterized by ¢ (de Rham
[1993]). These relations are due to the relationship between a number’s binary
expansion and its corresponding sequence of contractions wy and w; that define its
place on the curve. Thus, we have a pair of explicit formulas that indicate that the

curves we obtain should possess some sort of self-similarity.

And, indeed, figures 17, 18, and 20 show that de Rham curves do indeed possess
self-similarity. For completeness, we also list the Koch curve itself in figure 19. In all
these examples, we certainly end up with a curve which isn’t obviously differentiable,

yet the curves are (at least visually) continuous, constituting a single curve.

So, via our newly-understood metric spaces and IFSs systems that formalise fractal
objects, we're able to extend Helge von Koch’s results on the Koch curve to an
infinite number of related curves, showing that non-differentiable curves like it and
the Weierstrass function aren’t actually the “monsters” mathematicians initially
believed them to be, but are commonplace denizens in the world of continuous

curves. This mirrors nature: as we noted in section 1, much of the natural world
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FiGURE 17. The de Rham curve obtained using the mappings
1 11

wo(Z) = [ f]f and wy (%) = [_21 i}f—i—[
2 2 2

as the Cesaro curve or Lévy C-curve. Figure obtained from Vepstas

[2006].

. This curve is known

PN
[SIENIES

1.8 T T T T T T T T T

1.6

1.4

1.2

0.8

0.6

0.4

0.2

o L L 1 ) | 1 L . |
] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 18. The de Rham curve obtained using the mappings

—

1 1

wo(Z) = h g}f and wy (7) = [_21 g]f+[%] This curve is known as
5 5

the Takagi curve or blancmange curve. Figure obtained from Vepstas

[2006].

37

consists not of the nice, smooth constructions of abstract mathematics, but of rough,

jagged objects that require great care both to model and to understand?.

20 _and to appreciate!
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FiGUurReE 19. The de Rham curve obtained using the mappings
1 3 1 V3 1

wo(Z) = {jg ﬂ]fand wy (%) = [ s 6]54—[\%] This curve
% T3 - 5

6 2
is our familiar Koch curve!
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FIGURE 20. An example of an arbitrary de Rham curve. Figure
obtained from Vepstas [2006].

4. CONQUERING ROUGHNESS

4.1. Brownian Motion - Part 2. Let’s return to the topic of Brownian motion.
Our problem from before was devising a way to model the motion in a useful way.
We couldn’t simply use some simple, straight line approximations for Brownian
motion since the thing that makes Brownian motion unique is its jaggedness, its
resistance to being modelled via simple functions. However, once mathematicians
(and, in this particular case, physicists) began to understand more about roughness
and fractal-like objects, they realised that the roughness of Brownian motion had to
be embraced in order to make any sort of sense of it. In fact, in 1904, it was Einstein
who popularised the usage of non-smooth functions to model Brownian motion. His

models “used functions that were infinitely jagged [like the Weierstrass function]. It
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set a longstanding precedent: Physicists have used non-smooth functions as a proxy

for Brownian motion ever since” (Kucharski [2014]).

Researchers didn’t stop there. Another characteristic of Brownian motion is its seem-
ingly random nature (Mickelin [2017]). In the original context of pollen molecules
dancing around in water, Brownian motion is caused by the unpredictable move-
ments of water molecules bumping into the pollen, nudging it in equally-unpredictable
directions. If we want to model Brownian motion more faithfully, we should some-
how incorporate randomness into our functions and equations. This is exactly what
the mathematician Kiyoshi Ito did in the 1940s. To add randomness into the models
for Brownian motion, Ito “introduced a method for handling a mathematical func-
tion that depends on a non-smooth quantity—like Brownian motion—rather than
a more traditional variable, like distance. Using his new methods, he derived ‘Ito’s
Lemma’ to calculate how such a function changes over time” (Kucharski [2014]).
Ito’s work eventually led to the creation of stochastic calculus in the 1970s, which
“is used to study all sorts of phenomena, from neurons firing in a brain to diseases
spreading through a population. It is also at the heart of financial mathematics,
where it helps banks estimate option prices. It can account for the bumpy behavior
of a stock price, and hence reveal how the value of an option changes over time”
(Kucharski [2014]). Learning to model Brownian motion opened up the doors to

modelling all sorts of rough phenomena.

One example of such a rough phenomenon is lightning. Imagine air particles as a
bunch of small, hyperactive orbs that are jittering around and colliding with one
another. For lightning to strike Earth, there needs to be a conductive bridge between
the clouds in the sky and the ground. One such bridge can be created by air particles
bumping into each other close enough to transfer electricity (Mickelin [2017]). This
setup can be modelled using Brownian motion: move the air particles around the
air in a jagged, random way. If they bump into each other, we’ll “lock” the particles
in place, forming a connection. Over time, more and more air particles will collide,
creating longer and longer connections through which lightning can travel. In reality,
air particles don’t lock together like this, but they’re densely-packed enough (and
move fast enough) so that connections like ours will be formed at particular instances
in time, so our model isn’t totally inaccurate. If we tried to model our particles as
densely as they are in reality, we’d likely suffer precision errors (and/or the code

would be too slow), so this is a good alternative.

Using such a simple model, we may expect simple lightning shapes to emerge:
straight lines, maybe a few zigzags, but nothing more. This is not what happens.

In fact, we get the same branching, capillary structures of lightning. Importantly,
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we notice that the resulting pathways are very jagged and winding (see figure 21).
Thus, our simulated lightning ends up exhibiting fractal structure. This is perhaps
unsurprising since, to generate the pathways, we used Brownian motion. However,
because we end up with something fractal-like, we can use the tools and techniques
developed for fractals to analyse and model these pathways. In other words, we don’t
need to run a simulation of hundreds of particles to simulate lightning. Instead, we

can use tools like the ones developed by Ito and Mandelbrot!

FIGURE 21. A simulation of diffusion limited aggregation provided
at Mickelin [2017], where particles can only stick to those that have
stuck themselves to the central structure.

The model we described for simulating lightning strikes is known as diffusion lim-
ited aggregation, and it happens to describe many other real-world phenomena, like
how blood vessels wind through the human body, or how bacteria form colonies
(Mickelin [2017]). Like coastlines, the fractal dimension of diffusion limited aggre-
gation can be calculated to give some measure of roughness to the resulting patterns.
The fractal dimension comes out to be around 1.71 (Mickelin [2017]), making it far
spikier than the Koch curve, whose fractal dimension was just over 1.26 (since the
higher the number, the more jagged the object is, according to Richardson’s obser-

vations).

Because diffusion limited aggregation can explain so many real-world phenomena,
knowing its fractal dimension immediately tells us how rough and jagged we should
expect all these phenomena to be! As well, because Mandelbrot’s fractal dimension
is intrinsically related to length and scaling, knowing the fractal dimension of an

object/design tells us something about how large, in some sense, we expect that
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FI1GURE 22. Much like tree branches, lightning features many branch-
ing pathways and jagged limbs. Original image is “Scenic View of
Thunderstorm” by Amol Mande from Pexels.

object /shape to be. For example, comparing a bacteria colony modelled using diffu-
sion limited aggregation to the Koch curve, we expect the pathways of the bacteria
to be longer and more winding than the Koch curve, giving us a sense as to the

density of the colony.

Diffusion limited aggregation is a useful model, but it isn’t the only one of its type.
A more complex model often used to model surface growth (like snow piling atop
the ground) is called the Kardar-Parisi-Zhang (KPZ) equation, and is given by the
following stochastic (random process) differential equation:
oh  ?h X (0h\® dB
@ a2 (a) at’
where B(t) is a function used to describe a particle’s path under Brownian motion
over time, v and \ are parameters of the system we adjust depending on the context,
and h(z,t) is the function describing whatever random, jagged process we wish to
model (like lightning strikes) (Mickelin [2017]). An entire project could be made
just on this stochastic differential equation alone. Many other interesting models
describing random, jagged processes are derived from the KPZ equation, and the

KPZ equation itself is still being researched by mathematicians and physicists alike
(Mickelin [2017]).

Like the tools we built up in sections 3.4 and 3.5, the KPZ equation is yet an-

other way mathematicians/physicists can make sense of roughness. By studying its
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properties, we can deduce more about how fractal-like objects behave and construct

themselves, whether in nature or in the toy models we create using IFSs.

4.2. Weierstrass Function - Part 2. In section 2.2, we mentioned how it was
practically impossible to plot the Weierstrass function at the time it was initially
being discussed. However, with the advent of computers and programs like Maple,

we can plot the function almost instantly with two lines of code:

w = (x, n) — sum(cos ((3 k)*xPixx)/(27k),
plot (w(x, 100), x=-0.5..0.5, y=—1.5..1.5)

k=1..n);

This gives us the following plot:

—05

15

FiGURE 23. A plot of the Weierstrass function from z = —0.5 to = = 0.5.

Immediately, we see that the Weierstrass function is very much like the rough objects
we’'ve been considering throughout this project. It’s clear from the plot that the
function is indeed continuous (one contingent line), and is not differentiable at most
points (due to its spikiness). As well, with a little zooming (see figure 24), we note

that the function is self-similar.

Thus, to understand the Weierstrass function, we’d need to approach it as a fractal,
something that mathematicians at the time it was being discussed weren’t equipped
to do.

However, once the roughness of the Weierstrass function was accepted, it found

usefulness in applications like Brownian motion?! where the jagged, almost random

2lWhat a coincidence! We were just talking about that!
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FIGURE 24. A plot of the Weierstrass function from z = —0.01 to
x = 0.01, zoomed into the “tip” of the mountain at x = 0.

paths of particles needed functions to model them (Kucharski [2014]). The unpre-
dictability of the Weierstrass function happened to fit that bill nicely.

4.3. Julia Sets - Part 2. When computers hit the scene, mathematicians were
finally able to properly see what Julia sets looked like. Before that, they could only
get a rough idea as to the general shapes of the sets. In particular cases (such as
the one in section 2.3), they could draw exact Julia sets, but these cases were rare.
So, imagine their shock when, after only being able to visualise overly-simple Julia

sets, they were greeted to pictures like the following;:
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FIGURE 25. Plots of various Julia sets under functions of the form
f(2) = 2% + ¢ for complex z and c¢. Image taken from Pyke [2003].
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The black region of the images in figure 25 represent the Julia sets for each respective
system. These are a far cry from the simple circle boundary of figure 4! In fact,
the vast majority of Julia sets are complex. With the exception of a small number
of values (like ¢ = 0 and ¢ = 2), all Julia sets corresponding to the quadratic map
f(z2) = 2% + ¢ generate wildly-complex shapes, too complex to adequately draw

without a computer (Weisstein [2024c]).

The shapes of Julia sets end up being complex enough to warrant their own clas-
sification system. For the second Julia set on the top row of figure 25, we notice
that it seems to be more “disconnected” than the others—it’s a collection of scat-
tered points rather than some spiky, enclosed area. Such disconnected Julia sets
are called Fatou dust (Weisstein [2024c]). For the more “connected-looking” sets,
mathematicians have given some of the more distinctly-shaped sets names. Figures

26 and 27 showcase some of the more well-known types of Julia sets.

FIGURE 26. A particular Julia set known as the “Douady’s Rabbit
Fractal”, corresponding to the function f(z) = 2 — § + 2i (Weis-
stein [2024c|, PrimeFan [2013]). The fractal was named after French
mathematician Adrien Douady, who worked on dynamical systems
(Mravinci [2013]). Image taken from Moulay and Baguelin [2007].

From figure 26, and less obviously from figure 25, we see that Julia sets are both
intricately detailed and possess self-similarity. It turns out that the iterative process
for creating Julia sets produces fractals! However, for all of the complexity within
these sets, they’re still the result of an iterated process, just like the attractors of our
IFSs. So, we can treat them just as we did for all the previous fractals we considered
(such as the Koch curve). In fact, for any particular Julia set, we can create an IFS

whose attractor has a boundary equal to a given Julia set.

Say we're given a Julia set whose defining function is given by f(z) = 2% + ¢ for
some ¢ € C. So, some a € C is in J ¢ if, under repeated iteration of f, the sequence
(fi(a)), i € N, remains bounded. The Julia set J; is then the boundary of J;,

just like before. Earlier, the only way we had to compute J; was to iterate over
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FIGURE 27. A particular type of Julia set known as a “dendrite” frac-
tal. Several functions generate dendrite Julia sets, one such example
being f(z) = 22 4+ i (Weisstein [2024c]). Dendrite fractals are a com-
mon type of fractal that appear in various places (like the diffusion
limited aggregation models discussed in section 4.1), not just in Julia
sets. Image taken from HandWiki [2023].

all complex numbers, determine the shape of .J 7, and then take its boundary. Even
with the tools of metric spaces we developed in section 3.4, finding the boundary of
an arbitrary set is rather difficult, especially if we can’t visualise the specific set. As

figure 25 shows, Julia sets fall into the category of “difficult to visualise”.

However, using IFSs, we have an easier way to find the boundary. Take the two
inverse maps of f: wy(z) = vz —c and w_(z) = —/z — c. These two mappings
aren’t quite contractions since, for all z € C such that |z — ¢| < }l, both w, and
w_ will take input points farther away from each other rather than squishing them
together. However, for all points outside this region (which is a circle of radius }1
centred at ¢), both mappings are contractions. Then, the mapping w : 5(C) —
H(C), w(S) = wy(S) Uw_(S) isn’t strictly a contraction, and so the Contraction

Mapping Theorem doesn’t guarantee us an attractor for the IFS.

However, it turns out that w is “close enough” to a contraction so that the IFS does
have an attractor! As an example, take ¢ = 0.274 — 0.0087, so that the defining
function for the Julia set is f(z) = 2* 4+ 0.274 — 0.008:. Starting with a circle of
radius 2 centred at the origin, repeatedly applying the map w results in the following

sets:
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FIGURE 28. Starting with a circle of radius 2 centred at the origin,
repeatedly applying the map w results in a fractal shape emerging.
Images taken from Sims.

The resulting shape represents all those complex numbers who, under repeated
iteration of f, remain bounded. Thus, the boundary of the resulting shape gives
us the Julia set Jy. Because this process is formalised as an IF'S, mathematicians
can make use of all the tools of metric spaces and IFS available to them to analyse
the Julia set! This allows for far more sophisticated results to be shown for these
sets. For example, we can show that J; is the smallest closed set containing all the
repelling periodic points of f (SCHWICK [1997]). As well, the above IFS suggests
another way to characterise Julia sets: for all but at most two points in C, J; is the
set of limit points of the full backwards orbit |, f~"(z), z € C. The two exception

points would be the fixed points of the mappings w, and w_.

With an IFS description of Julia sets, it’s also possible to find an approximate fractal

dimension for Julia sets with ¢ < 1:

e®

D=~1
T )

(Weisstein [2024c]).

We see that, once again, having a formal set of tools and terminology for working
with fractals allows us to uncover properties of fractals that would otherwise go
unnoticed. As well, the use of computers to visualise said fractals allows us to get a
sense for how jagged these objects really are, which is important for building the right
sort of intuition. We’d rather not fall into the same traps mathematicians did during
the time of Weierstrass! By both working with fractals carefully (i.e. using properly-
defined definitions) and using computer-generated plots to make conjectures and

guide our reasoning, we can be sure that our conclusions are sound and correct.

Sometimes, even with the rigorous tools we’ve built up throughout this project, there
are some questions which prove terribly difficult to answer. Computer visualisation,
then, proves to be an invaluable tool. For example, consider the following question:
given the defining function f(z) = 2% + ¢, for what values of ¢ € C is the resulting
Julia set Jy connected? Here, a connected set is one that cannot be represented as

the union of two nonempty, disjoint, open subsets of the original set. This definition
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matches with our usual understanding of what it means for something to be con-
nected: if the set can be sectioned off into separate chunks, then it’s disconnected.

Otherwise, it must be connected.

From figure 25, we can see that some Julia sets are sets of “scattered” points, re-
sembling dust more than a single connected path. Other Julia sets like the Douady
rabbits seem more like connected paths, although it isn’t entirely clear if they ac-
tually are connected. If we try various different values for ¢, we’ll find that values
of ¢ close to zero produce Julia sets that look connected, while values of ¢ farther
away appear more likely to be disconnected. Is there some underlying shape to the
values of ¢ that produce connected sets? In other words, is there some shape that,

if we pick c inside of this shape, we end up with a connected Julia set?

In 1981, Robert Brooks and Peter Matelski were the first to attempt to understand
this shape (Brooks and Matelski [1981] 68). While a specific description of the shape
isn’t given in their paper on the subject (which is really more about the properties

of a particular mathematical group), they provide a rough image of the shape:
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FIGURE 29. An asterisk is plotted on a complex number c if the Julia
set defined by the function f(z) = 22 + c is connected. Image taken
from (Brooks and Matelski [1981] 71).

It suffices to say that the shape produced in figure 29 is unexpected. Rather than
being some simple geometric shape or a completely chaotic mess, we get something in
between: a strange cardioid shape with what appear to be circles or bulbs protruding
from it. Though, the image is quite low resolution, so it’s difficult to know for sure

whether that’s actually what we’re seeing.

A year or so later, Mandelbrot independently rediscovered this shape and published
his findings in the book The Fractal Geometry of Nature (Munafo [2023]). This
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rediscovery stirred some attention in the mathematical community, and soon, the

shape was rendered in a much better resolution:

F1GURE 30. The same shape as plotted in figure 29, but at a much
higher resolution. Image taken from (Fonseca [2024]).

The resulting shape is even more bizarre at a higher resolution. More than that, the
shape appears to be a fractal in its own right! If we look closely, we’ll see that figure
30 has these small black dots floating just around the main shape. If we were to
zoom in, we’d find that these dots are miniature copies of the larger shape, showing
that this shape indeed possesses some amount of self-similarity. Even if we didn’t
know that, however, the seemingly-infinite number of circles tangent to the main
cardioid would suggest that this shape is infinitely rough, just like Richardson’s
coastlines. No matter how much we zoom into the figure, it’ll never be perfectly
smooth; there will always be more circles popping out of it. Ditto for the circles

themselves.

This shape ended up being so interesting that it was given its own name: the
Mandelbrot set. Just as much interest, if not more interest, has gone into under-
standing this fractal (Weisstein [2024e]). We know that the boundary of the set
has fractal dimension 2, and we know that the area of the set is approximately
1.506 (Weisstein [2024¢]). However, many open questions still exist. For instance,
it’s unknown whether the Mandelbrot set is pathwise-connected, a special type of
connected set A where, given any two points z,y € A, there exists a continuous

function f :[0,1] — A with f(0) = z and f(1) = y. This is particularly funny since
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the Mandelbrot set was intended as a sort of visual aid for determining whether
certain Julia sets were connected or not! One problem about connected sets leads

to another.

What s known is that, for any given Julia set, it’s either pathwise-connected or
totally disconnected, meaning for all distinct points x and y in the set, there doesn’t
exist a continuous function f on [0, 1] such that f(0) = x and f(1) =y (Belk). This
is known as the Fundamental Dichotomy Theorem, and it was actually proven by
Gaston Julia and Pierre Fatou before computer images of Julia sets were created
(Belk)! This is yet another example of how having a formal space in which to work
with fractals (e.g. metric spaces) can drastically aid in proving results for said
fractals. Even without images, Julia and Fatou were able to prove a remarkably-
complex property of Julia sets, all without the full knowledge that they were working

with fractals!

As is common with topics about fractals, the Mandelbrot set is an extensive enough
object to fill its own project. The takeaway from all this is that, given rigorous tools
and computer visualizations for fractals, mathematicians are able to go much deeper
into their investigations, sometimes uncovering completely new fractal objects in the
process! Without these things, we’d likely be stuck toying around with the ideas of

Julia sets without making much headway (as was the case in section 2.3).

5. CONCLUSION

As is probably evident from reading this project, the history of fractals is long, wind-
ing, and not at all straightforward—almost like fractals themselves. We attempted
to touch on some of the major ideas and developments in the field: understanding
Brownian motion, the creation of the Weierstrass function, Julia sets, Richardson
and Mandelbrot’s exploration into the roughness of coastlines, and finally the for-
mal tools and definitions used in the analysis of fractal objects. Through these
topics, a few key ideas emerged. To understand fractals, we must accept the rough-
ness that comes along with them, rather than trying to brush it away through
generalisations and oversimplifications; ignoring the details leads to problems, as
Weierstrass demonstrated with his function. And, as Weierstrass also made clear,
we need properly-formulated tools and definitions in order to make rigorous con-
clusions about fractal objects (or any sufficiently complex object in math, for that
matter). Observations and intuition are essential in guiding mathematics, too, but

they can easily obscure us from the finer details.
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Many topics were covered in this project, but we only scratched the surface of the
vast world of fractals and their history. Even individual fractals like the Sierpinski
triangle could fill a project of their own. The thing appears everywhere: as the
emergent shape of the Wolfram rule 90 cellular automaton (Weisstein [2024g]), as
the resulting shape of colouring all the odd numbers on Pascal’s Triangle (Weisstein
[2024g]), as the figure produced by a strange plotting process known as the Chaos
Game, and so on. Not only do fractals appear everywhere, but specific fractals also

occur in vastly different contexts!

Fractals also extend far beyond the self-similar patterns we see in nature. They can
also be used “to explain how galaxies cluster, how wheat prices change over time
and how mammalian brains fold as they grow” (Hoffman [2010]). Perhaps the only
thing surprising about fractals at this point is that it took humans so long to give
a proper name to them! For a type of object that constantly surrounds us, it’s a

wonder we weren’t working with them sooner!

In any case, the development of fractal geometry and all its related disciplines caused
a massive shift in mathematical thinking. No longer could the world be described
with simple, smooth abstractions. Mathematicians realised that the roughness of
the world couldn’t always be ignored in their thinking. Through the developments
explored in this project (as well as innumerable others), we not only created the
tools necessary for working with these rough objects, but we discovered entirely
new objects that emerged from old ones (such as the Mandelbrot Set), a result of
our broadening understanding. As with fractals themselves, the study of fractal
geometry ended up being an endeavour whose complexity and beauty grows the

closer one looks.

Perhaps Mandelbrot himself put it best in his introduction to The Fractal Geometry
of Nature: “Clouds are not spheres, mountains are not cones, coastlines are not
circles, and bark is not smooth, nor does lightning travel in a straight line.” To see
what’s truly in front of us may be one of the hardest tasks mathematics asks of

us.
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