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1. Introduction

Imagine a door. It doesn’t have to be very fancy. All that’s important is that
its shape is clear. Very likely, that shape is going to be a rectangle (ignoring its
three-dimensional existence for a moment and just focusing on its face—the side
with the doorknob). Now, imagine that same door opening. Since the door is
merely rotating on its hinge and not being deformed in any way, its shape shouldn’t
change—it should remain rectangular. Indeed, when the human eye sees an open
door, it interprets the object as having the same rectangular shape as a closed
door.

This may seem like a totally uninteresting fact. It seems blatantly obvious that
moving an object through space should preserve its shape. For instance, moving a
cup of tea from one part of an apartment to another should leave the appearance
of the cup completely unchanged1. The only thing that would appear to change
about the cup is its size. If the cup was moved farther away, it would look smaller,
while if it was moved closer, it would look bigger. This can easily be understood as
the cup taking up more or less of one’s vision depending on its distance from the
eye. The cup isn’t actually changing size, of course. It’s just how humans perceive
distance.

However, this “tea cup changing size” idea raises an important point about the
“opening door” idea. If objects can appear to grow/shrink depending on their dis-
tance from some observer, then shouldn’t the edge of the open door closest to an
observer look larger than the opposite edge? If this is true, then an open door should
look less like a rectangle and more like a trapezoid, with the shorter far edge and
the taller close edge connected together by the top and bottom edges. Though, as
stated above, the human eye sees the open and closed doors as being the same shape:
rectangular. It seems the human eye is able to look past the “tea cup” observation
when viewing open doors and see the shape for what it is: a rectangle.

This ability of the human eye is what allows 3D environments to be drawn on 2D
mediums, such as paintings or computer screens. If objects are drawn in just the
right way so that they emulate the “tea cup” observation—which we’ll now refer to as
depth—then the eye will view the image not as a 2D surface, but a 3D environment.
The question now is how we’d go about capturing the proper depth of objects in a
scene in order to “activate” this ability of the eye. Anyone who’s attempted to draw
3D environments before will know that it isn’t as easy as simply making objects
bigger or smaller; they have to grow/shrink in a particular way.

1...so long as none of it was spilled.
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Figure 1. Open and closed doors, along with their pure “shapes”.
Though the human eye sees both doors as rectangular, the “actual”
shape of the open door is trapezoidal. Image taken/modified from
Blue “Gene” Tyranny’s album Out of the Blue (1978).

How exactly should objects grow/shrink in an image to convey their depth in a
scene? It’s an innocent enough question, but its answer requires opening the door
to some rather intricate areas of math, mainly projective and analytic geometry.
Our aim with this project isn’t to fully understand all the subtleties and complex-
ities that go into answering this question. Rather, we’ll focus on one of the many
techniques employed to draw three-dimensional scenes: ray tracing/marching. We’ll
cover the basic motivation behind why ray tracing/marching is a reasonable way to
approach this question, then we’ll dive into how we’d go about implementing it into
computer code (specifically through MATLAB). As well, we’ll discuss some of the
many applications of ray tracing/marching, showcasing the power (and beauty!) of
this method.

2. Motivation

Back in the time of the Renaissance, people were keenly interested in understanding
how to properly represent three-dimensional scenes onto two-dimensional canvases.
Up until then, people’s artwork looked markedly flat, with no real sense that the
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Figure 2. The Annunciation by Simone Martini is a great example
of the type of “flat” artwork created before the Renaissance.

image depicted a realistic scene. Objects that were supposed to be farther away
in an image were rarely drawn to scale, and the environments in which the objects
were placed were wholly separated from reality. This type of artwork certainly had
its appeal, but for Renaissance painters who strived to capture the “mathematical
law” of the natural world (Kline [1955] 80), it was a far-cry from what they wanted
to achieve.

So, when Renaissance painters began their quest for realism, they needed to devise a
way to capture the depth of a scene onto a flat surface. This is not a trivial task, as
it took Renaissance artists over a hundred years to come up with a solution (Kline
[1955] 80). However, once one hears the solution, it seems perfectly reasonable, and
maybe even obvious.

Think of how we as humans2 see a scene. In order to see anything, we need light
to hit our eyes. In order to see a particular object, we need light to bounce off of
that object and then hit our eyes. We use the angle at which the light hits our eyes
to deduce where an object is placed in a scene. We interpret an object as being
2...assuming the creature reading this actually is human...
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separate from the environment based on how certain parts of the light are absorbed
by the object’s material, leaving our eye with different “pieces” of light that make
it look different from its surroundings3.

One way we can visualise this process is by imagining beams of light as thin strings
that travel in straight lines from a light source. When they bump into an object,
they bounce off of it and travel in some other straight-path direction. If the string
happens to bump into our eyes, we see the last object with which it collided. This
collection of “light strings” that hit our eye (and none of the strings that don’t hit
our eye) is known as a projection of a scene (Kline [1955] 80).

Now, with this visual established, imagine looking out a window at some scene. In
order to see anything from the scene, our projection must cross through the glass of
the window before it reaches our eye. The brilliant idea of the Renaissance painters
was to imagine the window as their canvas (Kline [1955] 80). Since the strings of
light in our projection are all aimed at our eye (since otherwise they wouldn’t be in
the projection), it doesn’t matter where exactly the strings of light “start”. Whether
a string starts from the sun, the last object it touched, or even the window we’re
looking through, so long as its trajectory stays the same, then nothing will change.
So, if a group of light strings bounce off an object and cross through the window
at a particular area, and a painter paints that object in exactly the same spot on
the window (using the correct colours and textures and all that), then shouldn’t the
painted object’s light hit our eye in exactly the same way as the real object? If done
correctly, the answer is yes.

Thus, by imagining the light strings in a projection as crossing through some plane
(like a window), Renaissance painters were able to capture the depth of a scene and
all the objects within it. The plane through which a projection crosses is known as
a section of a scene (Kline [1955] 80).

In fact, Renaissance painters often did more than just imagine light strings. They
took the idea quite literally, using actual pieces of string and an actual viewing
window to connect the light strings from an object to the section (see figure 3).
This process worked well for scenes that Renaissance painters could construct in
front of them, but what about scenes that they couldn’t? What if a painter had the
urge to paint a scene they could only imagine? In that case, this technique wouldn’t
be of any help; light strings couldn’t be attached to objects in their mind.

3Thankfully, this isn’t a physics project, and so we don’t need an exact definition for what we
mean by light “pieces”. What’s important is that, because of the different ways materials interact
with light, different objects look different from each other.
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Figure 3. The Designer of the Lute by Albrecht Dürer, demonstrat-
ing the process of using physical light strings to accurately capture a
section of a scene.

If the ideas of sections and projections were to be applicable beyond simply copying
predetermined scenes, the techniques had to be understood from a conceptual point
of view. Renaissance artists had to understand exactly how the light strings created a
realistic image. Once they understood that, then attaching physical strings to things
would be unnecessary—all they’d need to do is apply their reasoning to any scene
they wished and determine what image their light strings would’ve produced4.

The quest to understand these concepts led to the development of projective geom-
etry (Kline [1955] 80-81), a vast area of mathematics which is way too large to even
pretend to cover in this project. For us, though, all we need to know is that the
tools of projective geometry were created, and painters were able to paint scenes
that only existed in their mind thanks to these tools.

At this point, the reader may wonder why we’re so interested in the techniques of
painters from the 1600s. This is a valid question. It turns out that the problems
Renaissance artists faced when creating paintings of imagined scenes are the ex-
act problems computer scientists face when attempting to render three-dimensional
4It should be noted here that the term “light string” is by no means a standardised term. We use
it only for ease of understanding, and because a formal term is not yet needed. When we switch
our discussion to ray tracing/marching, more standard terminology will be used.
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scenes on a computer. Though, in some sense, the computer scientists have it worse.
Not only do they need to find a way to realistically display a three-dimensional scene
onto a two-dimensional canvas (i.e. the monitor), but they must also devise a way to
represent that scene in a way the computer can understand. With the Renaissance
painters, there was no need to worry about how a scene was stored in the brain.
Once it was imagined, it was there. With a computer, however, there’s an obvious
need to translate a scene from brain to binary before it can be displayed.

In any case, the tools of projective geometry are just as useful to the discipline
of computer graphics as they are to Renaissance painters, so much so that the
techniques the painters used are largely the same as those that contemporary dig-
ital programs use to render three-dimensional scenes. In other words, Renaissance
painters basically used ray tracing to create their artwork, the same technique mod-
ern computers use to create animated movies, render medical images, and more5.
In section 4, we’ll discuss this similarity more explicitly. Before that, there are a
few important concepts we need to establish before we can delve into the actual
algorithms.

3. Setup

3.1. Storing Objects. How do we store scenes in a computer? It isn’t as simple
as storing a photograph of a scene, which is just a collection of coloured pixels in an
array. A photograph doesn’t store any data regarding the actual objects in a scene;
everything gets flattened. If we tried to use an image of a scene as our storage
medium, we wouldn’t be able to view the scene from any angle other than the one
at which the image was taken. For things like video games where we want the player
to be able to roam around the game world as they please, this is an issue.

A more robust solution is to use tools from analytic geometry, which is essentially
the study of geometric things as purely algebraic objects (Weisstein [2024]). We may
remember from our high-school math courses that a circle in the xy-plane can be
represented by the set of all solutions (x, y) to the equation (x− a)2+(y− b)2 = r2,
where (a, b) is the center point of the circle and r is the circle’s radius. Using this
representation, a circle becomes nothing more than a set of three numbers: a, b, and
r. This is very easy for a computer to store. Representing a sphere in the xyz-space
is no more complicated. For a sphere centred at the point (a, b, c) with radius r, the

5Section 5 gives some fun examples of where ray tracing/marching is used!
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set of all solutions (x, y, z) to the equation

(x− a)2 + (y − b)2 + (z − c)2 = r2

will give us that sphere. So, to store this sphere in a computer, we just need to keep
track of four numbers: a, b, c, and r.

Other shapes can be stored similarly by making use of equations whose solutions
represent the object of interest. The equations themselves get a bit more compli-
cated, but the idea remains the same. For example, given a non-rotated rectangular
prism centred at the origin with side lengths rx, ry, and rz, the equation whose set
of solutions (x, y, z) forms the prism is given by

max(|x| − rx, 0)
2 + max(|y| − ry, 0)

2 + max(|z| − rz, 0)
2 = 0.

Some readers may find such equations slightly dissatisfying as we make use of the
maximum function and the absolute value function, which feel a tad “artificial”
compared to the algebraic operations we used to define the sphere. However, if we
note that

max(x, 0) = |x|+ x

2
and

|x| =
√
x2,

then we can rewrite the box equation using only algebraic operations. Almost all
equations for geometric objects can be reduced down to purely algebraic operations if
we so desire. However, for the purpose of succinctness and computational efficiency,
it’s much better to leverage these “artificial” functions for defining our objects.

What about more complex objects? The majority of three-dimensional environments
we want to render are composed of much more complicated shapes than boxes and
spheres. If we were to try and derive equations to define them, we’d very likely
end up with an absolute mess! Thankfully, there’s a much easier solution, one that
should be fairly familiar to any readers with a background in calculus.

Recall the process of Riemann integration. To integrate some function over an
interval is to find the signed area beneath the curve of its plot. Depending on the
function chosen, it could be really difficult, if not impossible, to find an exact formula
to calculate the area. So, instead of trying to calculate it exactly, we approximate
the area using a collection of rectangles (see figure 4).

The size of our rectangles clearly affects the quality of our approximation; the skin-
nier we make them, the closer our rectangles cover the curve, and the closer their
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Figure 4. Using a bunch of rectangles, we can approximate
the area under a given curve. Plot taken from figure 5.3.8 of
et al. [2024]. The content is licensed under CC BY-NC 3.0
(https://creativecommons.org/licenses/by-nc/3.0/). Desaturated.

area will get to the true area of the curve. This exact principle can be used to
approximate objects in three-dimensional space.

Say we have a model of a video game character we’d like to store in a computer.
Rather than create some monstrous equation to define the character, we’ll approx-
imate the shape of our character using basic shapes that we know how to store.
Typically, the shape chosen for this purpose is the humble triangle. Other shapes
like quadrilaterals are also sometimes used, but for our example we’ll stick to trian-
gles. If we piece together a collection of flat triangles in just the right way, we can
approximate our model (see figure 5).

Note that only the surface of a model needs to be approximated. The player will
never need to see inside of a model, and so to approximate its shape, it’s sufficient
to use only flat shapes to cover the model, rather than try to fill it using polyhe-
dra.

Much like the case with Riemann integration, the smaller we make our triangles, the
better our model approximation will be, and the closer our model will look to the
intended character. Though, as with anything involving accuracy on a computer,
there’s a trade-off between model accuracy and performance. Increasing the number
of triangles we use will certainly make our models look more accurate, but it’ll also
put a bigger strain on the computer as there will be a greater number of shapes
on-screen to manage. Thus, 3D modellers must find a fine balance between realism
and performance.
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Figure 5. The player model from Super Mario 64 (right), alongside
its polygonal representation (left). Image taken from Tulsiani [2019].

This balance between accuracy and performance is very similar to the balance be-
tween numerical accuracy and computational effort involved in computing a Rie-
mann sum. The more rectangles we use, the better the approximation, though
using more rectangles means performing more computation. And, just like how we
created techniques like the trapezoid rule and Simpson’s rule for improving Riemann
integration, so too are there optimisations for making polygonal approximations of
models more computationally efficient without sacrificing accuracy (see, for instance,
Ruin [2022]). This is a topic worthy of its own project, so we’ll simply acknowledge
it and continue without further thought.

3.2. Interacting with Objects. Now, with a method for representing (approxi-
mately) any object we want within a computer, the last thing we need to discuss
before we can actually begin rendering scenes is how to make use of these repre-
sentations. In particular, how do we ensure that the depth of a scene is properly
captured? For instance, if we have a sphere sitting at z = 5, and another sphere of
the same size sitting at z = 10, then viewing this scene from the origin should make
the sphere at z = 10 seem smaller than the sphere at z = 5, just as we discussed in
section 1.

The thing which will “encode” depth for us is the signed distance function, or SDF
(Walczyk). As the name suggests, an SDF is a function which computes the distance
from a point to some given object. The function is signed so that the function can
detect whether a point is inside or outside of an object. If the sign is positive, then



12 ZACH STRONG

the point is outside. Otherwise, it’s inside. For this project, we won’t deal with
any cases where points are inside of objects, so this detail is mentioned only for
completeness.

Having mathematical representations of our objects makes creating SDFs for them
fairly straightforward. Let’s consider again the humble sphere. An arbitrary sphere
will be centred at some arbitrary point, say a⃗ = (a1, a2, a3), and it’ll have some given
radius, say r. How do we compute the distance between this sphere and a given
point x⃗ = (x1, x2, x3)? For any point to be touching the sphere, it must be exactly r

units away from the centre point a⃗. In fact, this is exactly what the sphere’s defining
equation says:

(x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 = r2

⇐⇒
√
(x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2 = r. (1)

The left-hand side of equation 1 is calculating the distance between a⃗ and x⃗ (via the
3D Pythagorean Theorem). If that distance is equal to the radius, then the point x⃗
must be on the sphere by definition. This is equivalent to saying√

(x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2 − r = 0. (2)

Now, the left-hand side of equation 2 must be zero for x⃗ to be on the sphere. Notice
that if the distance between a⃗ and x⃗ is greater than r, the left-hand side will be
positive, while the left-hand side will be negative if the distance is less than r. This
is exactly what we want for our SDF. Thus,

SDFsphere(x⃗, a⃗, r) =
√

(x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2 − r.

Using this function, we can quantitatively measure which objects are farther away
in our scenes, allowing us to incorporate depth into our renders (Walczyk).

For the earlier example with the two spheres at z = 5 and z = 10, this SDF is
a bit overkill for determining which sphere is farther away. Though, for complex
scenes where objects aren’t placed at “nice” coordinate points, the SDF provides
a simple way to determine distance from an observation point (e.g. where a video
game’s player is standing). As well, for objects which aren’t as simple as spheres,
determining distance is much more difficult, and so the SDF will handle all the
complexity involved in calculating distances.

Consider two cubes sitting in a scene, both having their center points an equal
distance away from an observation point (see figure 6). One cube has one of its
faces angled directly towards the observation point, while another cube has one of
its vertices angled directly towards the observation point. If we were to try and
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Figure 6. Two equally-sized cubes, each with center points an equal
distance away from an observation point. Which one is closer?

naively measure which cube was closer using something simple (like their center
points), we’d determine that both were the same distance away. However, the cube
with its vertex pointing towards the observation point is clearly closer—its vertex
reaches closer than the flat face of the other cube.

In cases like these, the benefits of having an SDF are plain to see. We may then
wonder how such an SDF would be implemented. For the case of a sphere, we didn’t
need to worry about things like orientation since a sphere looks identical from all
angles. A cube, on the other hand, can look very different depending on the angle
at which it’s viewed, and so an SDF for a cube would have to take that into account.
However, if we look back at our defining equation for a box, we notice that it required
the box to have no rotation, and it required the box to be centred at the origin.
It seems, then, that we’ll have to derive a much more complicated expression for
representing general boxes!

While we certainly could derive a more complicated representing equation for a
box, it turns out that, using some clever manipulations, it’s not required (Quilez
[a]).

Say we have a box centred at the point a⃗ = (ax, ay, az) with side lengths along the
axes given by r⃗ = (rx, ry, rz) and rotations around the axes given by θ⃗ = (θx, θy, θz).
To compute the distance between this box and a point p⃗ = (px, py, pz), we first notice
that translating the entire scene by some fixed amount won’t change the distance
between the box and the point. In particular, we could translate the entire scene so
that a⃗ gets brought to the origin. With this translation, we’d now have our box at
the origin, and our point p⃗ would become p⃗− a⃗.

So, without loss of generality, we can assume that a⃗ = 0⃗. If it isn’t, we can just
translate our scene so that a⃗ is brought to the origin. In a similar vein, we notice that
we can rotate the entire scene without affecting the distance between our point and
the box. In particular, we can rotate the scene so that our box is aligned perfectly
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with the axes as we assumed in our defining equation for the box. Using rotation
matrices, our point p⃗ would then become[

1 0 0
0 cos(−θx) − sin(−θx)
0 sin(−θx) cos(−θx)

] [
cos(−θy) 0 sin(−θy)

0 1 0
− sin(−θy) 0 cos(−θy)

] [
cos(−θz) − sin(−θz) 0
sin(−θz) cos(−θz) 0

0 0 1

]
p⃗T,

where p⃗T represents the point p⃗ treated as a column vector (so the matrix multipli-
cation makes sense)6.

So, again without loss of generality, we can assume that no rotation is applied to
the box (i.e. θ⃗ = 0⃗). If there was rotation applied, we could simply rotate the entire
scene so that the box is perfectly aligned with the coordinate axes. With these two
simplifications, we notice that our box is now of the form described by our earlier
equation:

max(|px| − rx, 0)
2 + max(|py| − ry, 0)

2 + max(|pz| − rz, 0)
2 = 0

⇐⇒
√

max(|px| − rx, 0)2 + max(|py| − ry, 0)2 + max(|pz| − rz, 0)2 = 0. (3)

Much like equation 1, the left-hand side of equation 3 is calculating the distance
between the point p⃗ and the surface of the box. However, unlike the case with the
sphere, there’s a slight technicality we should address. A true SDF for our box will
give distance values when the point is inside the box. Because of how our defining
equation works, the LHS will always give a value of 0 when the point is inside the
box. So, we can’t just use the LHS as our SDF in this case.

Thankfully, modifying the LHS of equation 3 to give these “missing” distance values
isn’t too difficult. When inside the box, the distance to the box’s surface is given by
the smallest difference between the magnitude (absolute value) of any of the point’s
coordinates and the corresponding box length for that coordinate (e.g. rx for the
x-coordinate, ry for the y-coordinate, or rz for the z-coordinate). As an expression,
this is given by

min(||px| − rx|, ||py| − ry|, ||pz| − rz|).

6Note that the actual matrices used for “undoing” the rotation of the box depend on the way in
which rotations are handled by any given program. The expression provided here assumes that
rotations are applied in the order of pitch (around x-axis), yaw (around y-axis), and roll (around
z-axis). The specific details of this expression aren’t so important for our purposes. What is
important is knowing that the rotation can be undone in the first place.
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So, by taking the maximum of this expression and the LHS of equation 3, we obtain
our desired SDF7:

SDFbox(p⃗, r⃗) = max

√ ∑
i∈{x,y,z}

max(|pi| − ri, 0)2, min
i∈{x,y,z}

||pi| − ri|

 .

Symbolically, this is a rather scary function, but all it’s doing is calculating the
signed distance between a point p⃗ and the surface of a box with side lengths given
by r⃗. Perhaps now it’s clear why we’ve chosen not to list the SDFs for other basic
shapes.

In any case, the exact expression we ended up obtaining for our box isn’t all that
important for our purposes. The important takeaway from this digression is that,
given some arbitrary shape we’d like to place in our environment, we can always
transform and rotate the entire scene to place that object at the origin with no
rotation. Thus, for any shape, if suffices to find an SDF for a “simplified” version
of that object.

In fact, in some cases, it suffices to find an SDF for particular parts of an object,
rather than the entire object. Consider again our box example. A box is rather
symmetric: it has at least three planes of symmetry that split the box up into
eight “corner sections”. These eight corner sections happen to all be reflections
and rotations of one another. Thus, one way we could simplify our box SDF is by
assuming our given point lies closest to one of the eight specific corners of the box
and deriving an expression for the signed distance to that corner. Via translations,
we could then extend this SDF to cover the other seven corners.

4. Implementation

4.1. Ray Marching Intro. With the concept of SDFs established, we can now
explain the algorithm used to render a scene. The algorithm we’ll discuss first is
known as ray marching, a close relative of ray tracing. Both algorithms rely on the
same idea of following “light strings”, or light rays, and determining where they
cross through some viewing window. The points through which they cross will be
the places where our image will be drawn. The difference between the methods lies

7Note that this expression isn’t quite the true SDF for a box, since points inside the box will be
measured as having a positive distance rather than a negative. In code, this can easily be fixed
by using a conditional statement to swap the distance to negative whenever we’re inside the box
(which we can detect by checking whether the radical expression evaluates to zero). Here, we leave
the expression as-is so as not to bog down the project with more unnecessary notation—there’s
already enough of that!
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solely in the computations performed for following the rays of light as they bounce
around in the scene. Typically, ray marching is the simpler of the two algorithms,
and in many cases, it performs much better than ray tracing (as we’ll see in the
following sections), so we’ll focus the majority of our attention on it. Section 4.4
will briefly note the differences between the two algorithms in more detail.

The premise of ray marching is this: at some observation point from which we want
to render our scene, we shoot light rays out through an imaginary window/frame
into the scene, keeping track of the objects they hit. If a ray hits an object, then
the place through which the ray crosses the window/frame is coloured depending
on what object it hit and other properties we impose on the scene (e.g. reflectivity,
lighting, etc.) (Walczyk). Below, we’ll go into more detail as to why the algorithm
works the way it does, but this is the basic idea.

So long as the light rays we shoot out behave like they would in reality (so, they
follow straight paths, reflect off of reflective surfaces, etc.), then the resulting scene
should be realistically depicted in the window we colour. Why? Well, this algorithm
is basically just mirroring how our eyeballs perceive a scene in real life, just in reverse.
Rather than light finding its way into our pupils, the light starts in our pupils and
works backwards onto the objects in the scene. However, this reversal doesn’t make
a difference as long as the light rays shot from the observation point eventually find
their way back to a light source. Below, we’ll discuss methods for handling lighting,
but really, this is a minor detail. The heart of ray marching is simply following the
light rays and seeing what objects, if any, they hit.

One of the major advantages of ray marching compared to other types of scene
rendering is that we don’t need to explicitly specify how a scene is to be converted
to a two-dimensional image on a screen. We just follow light rays and colour the
imaginary window according to what objects they hit. Almost like magic, the scene
will be properly flattened onto the window without ever having to explicitly tell
the computer how to convert the three-dimensional space into two dimensions. The
downside is that following light rays around a scene takes a lot of time and compu-
tation, even for simple scenes (as we’ll see in the next section).

4.2. Ray Marching Implementation. To start, we need to define the window
(or the section, using the terminology of the Renaissance artists) through which to
view our scene. This translates to us defining the width and height of our image, as
well as specifying how far from the observation point/viewer the window is placed.
Why must we define the distance? Imagine standing in front of a window and
slowly walking backwards. The amount of “outside” we see through the window
decreases as we walk backwards, and so specifying the window’s distance is, in fact,
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an important thing to do.8 In MATLAB, we can specify a width, height, and view
window distance as follows:
imageDimensions = [480 6 4 0 ] ; %y x
image = zeros ( imageDimensions ( 1 ) , imageDimensions ( 2 ) , 3 ) ;
distToFrame = 5 ;

Next, we need to implement our SDFs from section 3.2 into code. There are a
number of ways to do this, though for this implementation, we’ll define a MATLAB
function that takes as input a point and the properties of an object, and spits out
as output the signed distance from the point to the object. For example, our SDF
for the sphere could look like
function [ d i s t ] = dist_to_sphere ( sphereVect , sphereRadius , posVect )

d i s t = sum( ( sphereVect − posVect ) . ^2 )^ (1/2 ) − sphereRadius ;
end

Along with our SDFs, we also need a way to store our actual objects as data.
Otherwise, the SDFs will have nothing to operate on! Again, there are several ways
to do this. Our examples for this project will be relatively small, so we’ll store
our object data in simple structs and chuck all these structs into a list. Here’s an
example of a single sphere object specified in our program, centred at (0, 0, 8) with
a radius of 1:
o b j e c t s = { s t r u c t (” objectType ” , ”sphere ” , . . .

” c en t e r ” , [ 0 0 8 ] , . . .
” rad iu s ” , 1 , . . .
” sd f ” , . . .
@( th i s , p ) dist_to_sphere ( t h i s . center , t h i s . rad ius , p ) ) } ;

Of course, the specifics of these code snippets aren’t all that important. They’re
provided here solely as an example of how the math behind the algorithm might
be translated into computer code. Appendix A includes the MATLAB code used
to implement ray marching for this project, should we want a more complete refer-
ence.

Now, with our data specified and functions defined, let’s render this scene. As with
the Renaissance painters in section 1, we imagine how all the different light rays in
our scene will behave when interacting with our objects. However, instead of tracing
the light rays from the source of light to our objects, and then to our viewing window,
8The window’s distance from the viewer is related to the concept of field of view—how much we
can see of our scene at any given time. Many first-person video games have an option to adjust
the field of view during gameplay. In essence, options such as these are simply adjusting the view
window within the game’s code (Walczyk).
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we’ll go in the opposite direction: tracing our light rays from the viewing window
to the objects, then to the light source.

There are a few reasons for this switch. Firstly, if we shoot a bunch of light rays
out of some light source, there’s no guarantee that they’ll eventually make their way
through our viewing window. Worse, there’s no guarantee they’ll even hit an object!
This would waste a lot of computation on stuff that wouldn’t result in any sort of
change to our image. So, by starting at the viewing window instead, we can ensure
that all the light rays we compute will meaningfully impact our final image.

Secondly, even if all the light rays from a light source were to eventually cross
through our viewing window, how can we guarantee that every part of our window
is hit? For example, if all the light rays end up crossing through our viewing window
on the left, what do we draw on the right? We can’t immediately conclude that the
right side of the image is completely dark—what if we just need to shoot out more
light rays? From any given light source, there are an infinite number of directions at
which a light ray can shoot out (think of all the places we could stick a pin into the
surface of a sphere), so we’ll never truly be sure whether an untouched part of our
viewing window truly is dark, or whether we simply “missed” a direction to shoot a
light ray out from a light source. We can avoid this problem by shooting light rays
out from the viewing window. This ensures that every part of our viewing window
is crossed by a light ray, meaning we’ll know for sure whether that part of the final
image needs to be drawn or not.

To ensure we shoot enough light rays through our window, we’ll create one light
ray for every pixel in our final image. This requires using the dimensions and the
distance to the window we defined earlier. Naively, we may assign a coordinate
system over our viewing window like so:
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Then, if (w, h) represents the width and height, respectively, of the viewing window,
and z is the distance to the window we defined, then we could easily define our light
rays using the following expression:

p⃗i,j =

(
−1 + i

2

w
, −1 + j

2

h
, z

)
, 0 ≤ i < w, 0 ≤ j < h. (4)

Our rays would range from one end of the viewing window to the other in step
sizes that would account for all the pixels in our final image, and the rays would
all cross the viewing window by construction of our coordinate system. Note that
we’ve encoded the light rays as vectors. The coordinates of the vector represent the
“tip” of the light ray—that is, if our light rays are imagined as taut strings shooting
into our scene, then the vector coordinate represents where the end of the string
currently is, or how far the light ray has “reached out” into the scene. The direction
of the light ray is implicitly given by the directed vector between the viewer and the
tip of the light ray.

The setup explained above has a few flaws, the main one being that it doesn’t take
into account the aspect ratio of the viewing window. For square viewing windows
(when w = h), this approach works fine. If the window is not square (as is the case
with most images), we run into a problem with scaling. Notice that the distance
between the left and right edge of our viewing window under our imposed coordinate
system is 2, while the distance between the top and bottom edge is also 2. If the
width and height of the viewing window differ, then moving a point a pixel in one
direction will change the coordinate of the point a different amount then if we moved
the point a pixel in the other direction.

To see why this is a problem, imagine trying to render a sphere using a non-square
viewing window. Looking at a sphere head-on, it should appear like a circle on our
viewing window. However, because our coordinate system doesn’t take into account
the aspect ratio of the viewing window, the sphere will be “squished” along one
axis. The radius of the sphere will appear shorter along one axis since it’ll take
fewer pixels to span the length of the radius. Thus, our sphere will render as an
ellipse.

Thankfully, changing our code to take into account the viewing window’s aspect
ratio isn’t too difficult. We simply need to perform a transformation on our imposed
coordinate space so that a pixel in one direction is “worth the same” as a pixel in
another direction.

For example, suppose that our viewing window is longer than it is tall—most com-
puter monitors are like this. Let (w, h) again be the width and height of our viewing
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window, and z be the distance to the window. We’ll set the length of one pixel to
be ŝ = 2

h
. This means the distance between the top and bottom edge of the viewing

window will be 2, like before. However, because the window is longer than it is
tall, the distance between the left and right edge should be greater than 2. We can
accomplish this by modifying expression 4 to start our light rays further left in the
scene:

p⃗i,j =
(
−w

h
+ iŝ, −1 + jŝ, z

)
, 0 ≤ i < w, 0 ≤ j < h. (5)

One final adjustment can be made to expression 5 to better balance the image. While
it wouldn’t be all that noticeable for reasonably-sized images, our light rays are tech-
nically off-center by half a pixel. We start at

(
−w

h
,−1, z

)
and end at

(
w−2
h

, h−2
h
, z
)
.

Our light rays don’t end at the positive end of the viewing window; they stop just
short. For large windows, this difference won’t really be noticeable, but if we wanted
to ensure our light rays were truly centred, we could shift both starting coordinates
by one half:

p⃗i,j =

(
−w

h
+

(
i+

1

2

)
ŝ, −1 +

(
j +

1

2

)
ŝ, z

)
, 0 ≤ i < w, 0 ≤ j < h.

Finally, we have an expression for creating one light ray for every pixel in our image,
ensuring that every spot on our viewing window has light to colour it. In MATLAB,
we could implement this as follows:

rowShi f t = −imageDimensions (2)/ imageDimensions ( 1 ) ; %x/y
c o l S h i f t = −1;
p i x e l I n c = 2/ imageDimensions ( 1 ) ; %The ” width ” o f a s i n g l e p i x e l

for c o l = 1 : imageDimensions (1 )
for row = 1 : imageDimensions (2 )

%Create d i r e c t e d ray through p i x e l
rowPlace = ( row −0.5)∗ p i x e l I n c ;
c o lP l a c e = ( co l −0.5)∗ p i x e l I n c ;
pixelRay = [ rowShi f t+rowPlace c o l S h i f t+co lP l a c e distToFrame ] ;
unitRay = pixelRay . / sqrt (sum( pixelRay . ^ 2 ) ) ;

%I n s e r t o ther code here . . .

end
end

Note that we’re calculating a second vector unitRay. This vector is a unit-length
version of our light ray, pixelRay, which will be used in later snippets of code.
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Now that we have our light rays, what do we do with them? Well, we need to follow
the rays out through the window and into the scene, but how do we do this? How
do we know how far to shoot our rays out so that we don’t miss any objects in the
scene? One technique would be to step the tip of each light ray along its direction
by some small amount until we either hit an object or shoot off to infinity. This,
however, would be computationally expensive, as each ray would likely have to be
stepped hundreds or even thousands of times before it reaches an object in the scene.
Worse, because the step size would be fixed, it’s possible that the tip of a light ray
would “step over” a small object in the scene, passing directly through it without
detecting that it’s there (see figure 7)!

This is where our SDFs come in handy. Our SDFs, by definition, tell us how far a
point is from a given object. If we use our SDFs to calculate the distances between
the tip of a light ray and all the objects in a scene, we can then calculate the
minimum distance between the light ray’s tip and the scene. If we were to step
the tip of our light ray along its direction by this minimum distance, then we’re
guaranteed not to miss any objects. Otherwise, if we did miss an object with this
step size, then we clearly stepped more than the minimum distance to the scene
as a smaller step size would’ve taken us to one of the objects. So, by repeatedly
“marching” the tip of our light ray along its direction by the minimum distance to
the scene, we can ensure we don’t miss any objects without having to take a bunch
of painfully small steps. This is how this rendering algorithm received the name
“ray marching”.

Visually, we can imagine this process as surrounding our light ray with a small
bubble. This bubble grows and grows until it just touches some object in the scene.
Then, the light ray extends forward until it reaches the edge of this bubble. The
bubble pops, and a new bubble forms, starting the process over again. In this
way, light rays which are far away from any objects will take bigger steps (as the

Figure 7. If we march forward our light rays by a fixed amount, it’s
possible that the tip of the light ray will “step over” an object, missing
it.
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bubble will be able to grow quite large before it touches anything), while rays close
to objects will take small, careful steps (as the bubble won’t grow very big before
touching an object). Figure 8 below shows a visual depiction of this process.

Figure 8. A bubble extends outwards until it touches the scene.
Then, the ray “marches” to the edge of the bubble, and the process
starts again. We repeat until the distance between an object and
the ray is within some threshold, at which point we say the two are
touching. This prevents light rays from “stepping over” objects.

Interestingly, a light ray’s perception of the scene around it depends entirely on the
outputs of our SDFs. The light rays don’t know nor care about what the objects
actually look like. All they care about is how close they are to said objects. This
“decoupling” of objects from their SDFs allows us to do some very interesting things
that would otherwise take a lot of extra effort via other rendering methods. We’ll
discuss this in more detail in section 4.3.

In any case, so long as we have all our objects and SDFs stored in our code some-
where, then determining the minimum distance between the tip of our light ray and
the scene is relatively straightforward to implement. We simply loop over all objects
in our scene and calculate the light ray’s distance to them using the SDF. Then,
we take the minimum. In code, we may write a function to calculate this minimum
distance for us:
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function [ d ] = s igned_di s t ( point , o b j e c t s )
d = Inf ;

%Loop over a l l g i ven o b j e c t s
for i = 1 : s ize ( ob j ec t s , 2)

%Get t ing d i s t ance to t h i s p a r t i c u l a r o b j e c t
tempd = o b j e c t s { i } . sd f ( o b j e c t s { i } , po int ) ;

i f tempd < d
d = tempd ;

end
end

end

Using this function, we can then loop over all our light rays as we showed above and
calculate whether their tips are touching the scene or not. If they are, then we’ll
colour the place where those rays cross the viewing window white. Otherwise, we’ll
march the rays forward by the minimum amount and repeat. If a ray goes too far
in the z direction, we’ll assume it won’t hit anything and move on to the next light
ray. In code, this could look like

while pixelRay (3) < 100
%100 i s the f a r t h e s t d i s t ance a l i g h t ray can t r a v e l
% in the z d i r e c t i o n be f o r e we assume i t doesn ’ t h i t our scene

abs ( distToScene ) = s igned_di s t ( pixelRay , o b j e c t s ) ;

%I f the ray i s c l o s e enough to an ob j ec t , draw i t !
i f distToScene <= 10e−4

%Draw the l i g h t ray ’ s p i x e l whi te
image( c o l : co l , row : row , : ) = [ 1 1 1 ] ;
break ;

else %Otherwise , march by minimum d i s t ance
pixelRay = pixelRay + unitRay∗ distToScene ;

end
end

The last bit of code we need to write is just to write our image array out to an
actual image so we can see what our ray marching algorithm produced:

imwrite ( image , ” t e s t . png ” ) ;
imshow (” t e s t . png ” ) ;
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This is enough code to produce our first ray marched image! The scene we’ve defined
is quite simple: a sphere of radius one is sitting eight units in front of the viewer.
The resulting image is exactly this:

Figure 9. A sphere rendered using ray marching.

In practice, we’d likely never use a language like MATLAB to implement ray march-
ing. A single sphere is about the most basic scene we can produce via ray marching,
and yet the code provided here takes several seconds to produce the final image! If
we were attempting to program a video game using this method, where the screen
needs to be updated at least thirty times every second, this would be far too slow!
An environment more apt for graphics processing, such as WebGL, would perform
much better, as these environments can leverage the power of the computer’s GPU,
running thousands of calculations in parallel as opposed to sequentially like we’re
doing here.

While the specific structure and syntax of our code may change if we implement ray
marching in another environment, the logic and algorithms would remain exactly
the same. Everything we’ve written in MATLAB can be almost directly translated
into any other language, and all the tools and intuition we’ve built up throughout
this article will remain equally valid.

4.3. Ray Marching Extensions. Rendering a three-dimensional scene involves a
lot more than merely drawing objects. For starters, the scene we rendered in figure
9 has no concept of environmental lighting. The only “light source” in our scene is
the viewer, and it acts as an unrealistically-bright source of light. Anything our light
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rays hit, they illuminate perfectly. In real life, this very rarely happens. Imagine
pointing a flashlight directly onto a ball. The part of the ball facing the beam will
likely be very bright, while parts near the edge will be darker since less light is
pointed there. As well, objects which are farther away from the flashlight should
be darker than objects that are closer since more of the light beam will scatter
into the environment the longer it travels. None of this is accounted for in our
implementation. No matter how far away an object is, so long as our light beams
hit the object, it’ll be displayed at 100% brightness.

There are several different ways lighting can be implemented within a ray marcher.
There are also several different types of lighting that can be added: ambient, diffuse,
specular... the list goes on. The topic is large enough for its own project, so for our
purposes, we’ll focus on one particular type of light: point diffuse lighting.

Diffuse lighting, put simply, is a way to emulate the impact direction has on how an
object is illuminated (de Vries). Consider the screenshot of Super Mario 64 gameplay
in figure 10. Notice that the brick wall behind Mario is illuminated differently
depending on whether it’s to the left or right of the wall’s corner. This is because
the light from the stage’s imagined sun is hitting these two sections of the wall
at different angles, and so they’re brightened differently, just as they would be in
reality. A wall facing towards the sun is going to be brighter than a wall facing
askew. This is diffuse lighting in action. Without it, both wall sections in the
screenshot would be brightened the same, and the illusion of depth for the corner
would be lessened.

To implement diffuse lighting into our code, we need to find a way to calculate in
which direction an object’s surface is facing (de Vries). A relatively straightforward
way to do this is by making use of normal vectors. A normal vector is a vector
that points perpendicularly (orthogonally) outwards from a point on some surface.
If we remember some multivariate calculus, we can find the normal vector of a
surface defined by an equation/function (e.g. an SDF) by finding the gradient of
the function at the point of interest. The (normalized) gradient of a multivariate
function at a point tells us in what direction from the given point the function is
increasing the fastest. For an SDF, the function is increasing the fastest when the
point is moving perpendicularly away from the surface of its object, since this is the
quickest way to build distance from the surface, and the function is, by definition,
measuring this distance. So, if we’d like to find the normal vector of a surface at
some point, we simply need to calculate the gradient of the surface’s SDF at that
point and create a unit vector that points in the gradient’s direction.
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Figure 10. A corner of Whomp’s Fortress from Super Mario 64.
Image taken from “Super Mario 64: Whomp’s Fortress (Chip Off
Whomp’s Block) [1080 HD]” by @GamerJGB via YouTube.

Figure 11. A box with corresponding normal vectors drawn for each
visible face. The normal vectors protrude out perpendicularly from
the surfaces.

In general, computing exact expressions for the gradients of SDFs can be difficult.
Thankfully, gradients can be numerically estimated rather easily. When we numer-
ically estimate derivatives, we take two points close to the point of interest and
calculate the slope of the resulting secant line through those points evaluated by the
function. Since a function’s gradient is just a list of the function’s derivatives in each
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orthogonal direction (i.e. along the x-, y-, and z-axes), we can use the exact same
technique to numerically estimate the gradient of our SDFs: for each orthogonal di-
rection, take points close to our point on the surface of an object and calculate how
the value of the SDF changes between those points (Walczyk).9 If we store these
values in a vector, we’ll have a very good estimate of our gradient. If we normalise
the gradient, we’ll get a very good estimate to the normal vector to the surface of
our object!

Figure 12. To estimate the derivative at the black point, we take
points close to the black point and calculate the slope of the secant
line running through them. Estimating gradients uses the exact same
principle, just in multiple orthogonal directions.

The following code demonstrates how we may go about computing a normal vector
in our example ray marcher:
NORMALSTEP = 10e −8;
XVECT = [NORMALSTEP 0 0 ] ;
YVECT = [ 0 NORMALSTEP 0 ] ;
ZVECT = [ 0 0 NORMALSTEP] ;
normalX = s igned_di s t ( pixelRay + XVECT, o b j e c t s ) − . . .

s i gned_di s t ( pixelRay − XVECT, o b j e c t s ) ;
normalY = s igned_di s t ( pixelRay + YVECT, o b j e c t s ) − . . .

s i gned_di s t ( pixelRay − YVECT, o b j e c t s ) ;
normalZ = s igned_di s t ( pixelRay + ZVECT, o b j e c t s ) − . . .

s i gned_di s t ( pixelRay − ZVECT, o b j e c t s ) ;
normalRay = [ normalX , normalY , normalZ ] ;
unitNormalRay = normalRay . / sqrt (sum( normalRay . ^ 2 ) ) ;

9The term “close” here is intentionally left vague. How close we take these points depends on how
accurate our data types are, and how accurate we want our normal vector to be.
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This code would be computed once our light ray touches a surface. Here, the variable
NORMALSTEP is defining how close the estimate points are to the point on the surface
for which we want to find a normal vector. The vectors XVECT, YVECT, and ZVECT
are controlling which orthogonal direction we use to calculate the derivative of the
SDFs.

So, when one of our light rays touches the surface of an object, we can use the
above method to get a normal vector to the surface. Now what? If we want to
calculate whether the surface of an object is pointing towards a light source, we
should probably define a light source within our scene, separate from the light rays
we shoot out from the viewing point. We can do this similarly to how we defined
our scene’s objects: using a list of light sources:

l i g h t s = { s t r u c t (” l ightType ” , ” po int ” , ” c en te r ” , [−5 −10 3 ] ) } ;

With a light source defined, we can now use a helpful operation from linear algebra
to see how directly a surface is facing the light: the dot product. Given two unit
vectors, the dot product of those vectors will return the cosine of the angle between
them. If the vectors are facing in the same direction, the dot product will be 1.
As they point further and further away, the dot product will decrease. Once the
vectors are facing in opposite directions, the dot product will be −1. Thus, the
dot product gives us an easy way to measure how closely a surface’s normal vector
points towards a light source.

More specifically, we’ll take the dot product between the unit normal vector on
a surface, and a normalised vector pointing from the surface to the light source.
The dot product of these vectors will give us an indication as to how closely the
surface is pointing to a light source. Importantly, if the dot product is less than
zero (meaning the vectors are at least over right angles apart), then that means the
surface is pointing away from the light, and so it shouldn’t be illuminated. If the
dot product is greater than zero, then we’ll use that value to scale how brightly that
surface is coloured in our final image. The code for obtaining the dot product might
look something like the following:

dot = −1;
for i = 1 : s ize ( l i g h t s , 2)

i f l i g h t s { i } . l ightType == ” point ”
toLight = l i g h t s { i } . c en t e r − pixelRay ;
unitToLight = toLight . / sqrt (sum( toLight . ^ 2 ) ) ;
dot = max(dot , sum( unitNormalRay . ∗ unitToLight ) ) ;

end
end
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Then, using the value of dot, we can update the code we used to colour the pixels
of our image to incorporate point diffuse lighting:
image( c o l : co l , row : row , : ) = max( [ 1 1 1 ]∗ dot , [ 0 0 0 ] ) ;

The value of dot, then, scales how bright a shade of white we use to colour a point
on a surface. With our simple diffuse lighting implemented, rendering our sphere
from before produces the following image:

Figure 13. The same sphere from figure 9, rendered using diffuse lighting.

Because we have no ambient lighting, the parts of the sphere not facing the light
are entirely enshrouded in darkness, as we’d expect. A simple way to implement
ambient lighting is to change the second argument of the max function we use above
to colour each pixel in the image. Rather than setting it to black (i.e. [0 0 0]), we
could set it to a shade of grey (i.e. [0.5 0.5 0.5]) so that all parts of an object
receive some light.

Before we talk about other ways to extend ray marching, it’s worth briefly mention-
ing another type of lighting that is much easier to implement for ray marching than
for other rendering algorithms: ambient occlusion. Put simply, ambient occlusion
is a lighting effect that handles the proper lighting of corners within a scene (Garcia
[2019a]). Typically, the corners of a room are darker than the walls themselves since,
due to the geometry of the corner, less light rays are able to squeeze their way into
the corner. With ray marching, we can use our SDFs to calculate how “cramped” a
corner is by calculating how quickly the SDF increases as we move outwards from
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the corner (Garcia [2019a]). If the SDF increases slowly, then the corner is very
sharp, meaning it should receive very little light. If the SDF increases rapidly, then
the corner is very wide, meaning it’ll receive about as much light as the walls around
it. This calculation can be done once we detect that a light ray is touching a surface,
affecting how bright the resulting surface will be.

In general, lighting is one of the primary ways in which we add realism to a scene.
After all, every environment in the real world requires some amount of light in order
for us to see it. Another way to add realism is to use more complex objects in
the scene. It isn’t very often that we see mathematically perfect spheres and boxes
floating around in space. Often, the objects we see in reality are imperfect, slanted,
jagged, etc. How can we implement these sorts of shapes into our ray marcher?

This is where the “decoupling” between an object and its SDF comes in handy. As
light rays are marching through a scene, they don’t directly interact with any of
the underlying objects. Their view of the scene is completely determined by the
SDFs. If an SDF says a ray is close to an object, then it is. If we were to slightly
modify an SDF to describe a slightly different shape, then the light rays would “see”
that slightly modified shape (Walczyk). Importantly, this doesn’t require changing
anything about the original object. By modifying an SDF, we’re essentially applying
some sort of distortion to the object while leaving the underlying object itself intact.
We can think of it like applying a filter over an object, a filter that can change the
shape of an object. Or, perhaps more accurately, we can think of modifying SDFs
as giving our light rays some sort of hallucinogenic substance that changes their
perception of the world around them to be much more funky.

One easy distortion we can do to a sphere is making its surface ribbed. This can be
done by adding an extra value to the output of the sphere’s SDF that depends on
the height of the input point. So, our SDF would look something like

SDFsphere(x⃗, a⃗, r) =
√

(x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2 − r + c1 sin(c2x2),

where c1 and c2 are scaling constants that affect the amplitude and the frequency of
the ribbing, respectfully. Using c1 =

1
16

and c2 = 30, our sphere from before renders
with a wavy surface (see figure 14).

Notice that, despite the sphere being distorted, the lighting is correct; points on the
surface that are facing away from the light are still dark, while points facing towards
the light are illuminated. This is a direct consequence of the decoupling between
the underlying object and its SDF. Our lighting logic doesn’t care what the object
is supposed to be, it only cares about how the SDF describes it. So, if the SDF says
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Figure 14. The same sphere from figure 13, with added “ribbing”.

that the object has ribs, then everything in the code will behave as if the sphere has
ribs.

Now, this lighting isn’t 100% realistic since we haven’t implemented any logic
to check whether surfaces are blocking other surfaces from a light source, but
with the lighting logic we have implemented, the ribbed sphere looks exactly as
it should.

We can easily extend this SDF distortion technique to produce more realistic-looking
objects. Adding a small random element to the SDF’s output using something like
Perlin noise can make an object look more “lumpy” and imperfect. Adding slight
offsets to certain parts of an object can give the appearance of a “chipped” surface.
With just a few slight modifications to an SDF, we can completely change the
appearance of an object in some controlled way. This is yet another benefit to using
ray marching over ray tracing. In ray tracing, these sorts of changes would have to
be incorporated into an object’s “definition” rather than an SDF, and this is much
harder to do.

Another type of “distortion” we can do is combining objects. Technically, the scenes
that we’ve been constructing up to now have been the unions of many different
SDFs: given two or more objects, the resulting scene is a combination of all those
objects. However, taking a union is not the only way to combine SDFs. For example,
we could take the intersection of SDFs rather than the union (Quilez [a]).



32 ZACH STRONG

What would this look like? Well, to take a union of SDFs (like we’ve been doing up
to now), we compute the minimum distance that all the SDFs return and use this as
our “distance to the scene”. This makes intuitive sense. If one of our SDFs returns
a small number, that means our light ray is close to that particular object, and so
the ray is close to the scene. For an intersection of SDFs, a light ray shouldn’t care
whether it’s close to one of the objects. A light ray would have to be close to all the
objects if it’s close to their intersection. So, to take an intersection, we’d take the
maximum value our SDFs return and use that as our distance to the scene (Quilez
[a]). Then, all our SDFs would have to be small in order for the light ray to be close
to the scene, and so the light ray would interpret the scene as the intersection of our
objects rather than the union.

This technique can be used to make “cuts” on an object. For example, consider the
scene in figure 15. It shows an elongated box cutting through a sphere. If we were
to take the intersection of these two SDFs, the outer parts of the sphere and box
would be removed, leaving us with a sphere that’s “sliced” along the edges of the
box as in figure 16.

Other combinations we can take of SDFs include subtractions, XORs (exclusive or),
smooth interpolations between SDFs, etc.10 All of these provide alternative ways to
create more complex shapes. Rather than trying to derive weird SDFs for sliced or
combined objects, we can simply combine our SDFs using various operations!
10For some examples of these other operations, see (Garcia [2019a]) and (Quilez [a]).

Figure 15. A box cutting through a sphere.
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Figure 16. The same scene as in figure 15, except now the intersec-
tion of the SDFs is used rather than the union.

4.4. Ray Tracing. Up to now, we’ve focused our attention on understanding the
ray marching algorithm. How does ray tracing differ? The two methods of rendering
scenes are markedly similar: they both rely on describing objects mathematically,
they both shoot light rays out into a scene, and they’re both capable of producing
incredibly detailed renders. The key difference between them is exactly how the
light rays are shot out into the scene. While ray marching uses SDFs to “march”
its rays into a scene, stopping them when the functions declare that the ray is
touching an object, ray tracing directly calculates where a ray intersects with the
scene (Walczyk). It does away with SDFs and instead works with the defining
equations of the objects in the scene.

This approach is both an advantage and a disadvantage. The process of ray march-
ing can be incredibly slow for complex scenes; thousands of SDFs may need to be
calculated for each ray as it marches into an environment. Ray tracing, on the other
hand, only needs a single batch of calculations for each ray rather than having to
iterate over a “marching loop” countless times. The downside is that this batch
of calculations can get much, much more complicated. We know from our math
classes that finding where functions intersect is a nontrivial task, even for simple
functions like polynomials. So, imagine trying to find intersection points in a three-
dimensional space for complicated functions describing geometrical shapes. Things
get ugly very quickly.
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As well, because ray marching works directly with the defining equations for objects
and not their SDFs, it isn’t as easy to distort space as it was for ray marching, and
so certain visual effects are harder to achieve with ray tracing. However, because
ray tracing finds exact intersection points between rays and objects instead of points
where an SDF is close to zero, ray tracing can often lead to more realistic-looking
images, where reflections are more precise and shadows are more defined (Garcia
[2019b]).

For completeness’ sake, let’s walk through a basic example of ray tracing a sphere
to compare the process to ray marching.

As with our ray marcher, we’ll start with a sphere of radius one centred at the point
(0, 0, 8). The equation whose solution points define this sphere is given by

x2 + y2 + (z − 8)2 = 1.

Our viewing point will be at (0, 0, 0). Like before, we’ll shoot out light rays from
our viewing point into the scene through some imaginary window. If a ray hits an
object, we’ll colour where the ray intersected our viewing window. Once we’ve shot
out enough light rays to cover the viewing window, we’ll use the window as our final
image.

Here’s where things begin to differ from ray marching. Since we want to compute
the exact intersection between our sphere and our light rays, we should describe
our light rays as equations rather than points in space. That way, we can solve
for the intersection point in the usual way. One way to encode a ray (a line) in
three-dimensional space is to find two vectors that are orthogonal to the line (and
orthogonal to themselves), and solve for all the vectors that, when taking a dot
product with the two vectors, return zero. Because all our rays are assumed to
start at the origin (the viewing point), we don’t need to worry about cases where
the line doesn’t cross the origin, which is a nice simplification. Let ℓ⃗ be a vector
giving the direction of a light ray, and let a⃗ = (ax, ay, az) and b⃗ = (bx, by, bz) be
vectors orthogonal to ℓ⃗ as well as themselves. Then the solutions to the system of
equations

axx+ ayy + azz = 0

bxx+ byy + bzz = 0

give us the ray we want.11

11There are numerous ways to encode a line in three-dimensional space. This way was chosen for
this example as it gives equations similar to the ones we’ve dealt with up to this point.
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The only challenge here is finding the vectors a⃗ and b⃗ given a light ray ℓ⃗. The easiest
way to do this is to slightly change the way we create our light rays from how we
did previously. Before, we created our light rays by imposing a coordinate grid over
our viewing window and then setting the tips of the light rays to the coordinates
on the viewing window that corresponded to each pixel in our resulting image. In
this way, we ensured that every pixel of our final image had a light ray to colour
it. We’d still like to colour each pixel here, but if we use our previous method for
doing so, then finding two orthogonal vectors to each light ray that are orthogonal
to each other becomes a massive pain. Instead of directly using the coordinates of
pixels on our viewing window, it turns out to be much easier to describe our light
rays in terms of angles resulting from these coordinates.

Consider the unit vector with its tip at (0, 0, 1) (so, the unit vector along the z-
axis). We’ll denote it as ẑ. By construction, the unit vectors with tips at (1, 0, 0)

(the vector x̂) and (0, 1, 0) (the vector ŷ) are not only orthogonal to ẑ, but are also
orthogonal to each other. Thus, if we can find a way to rotate ẑ so that it points in
the direction of a light ray, then applying that same rotation to x̂ and ŷ will give us
our two orthogonal vectors to define the ray algebraically.

Using our scheme from before, the x and y coordinates of a generic light ray’s tip
passing through the viewing window are given by

ℓx = −w

h
+

(
i+

1

2

)
ŝ, 0 ≤ i < w,

ℓy = −1 +

(
j +

1

2

)
ŝ, 0 ≤ j < h,

where (w, h) gives the width and height of the final image (where the width is
assumed to be at least as large as the height), and where ŝ = 2

h
. If we start at the

origin, what angles would we need to tip ẑ by in order to have it point to these
coordinates on the viewing window? Let θx be the angle needed to rotate around
the x-axis (which would tip ẑ up and down), and let θy be the angle needed to rotate
around the y-axis (which would tip ẑ left and right). Using some trigonometry, we
find that

θx = arctan
(
ℓy
Z

)
,

θy = arctan
(
ℓx
Z

)
,
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where Z is the distance from the origin to the viewing window. So, using these
angles and throwing them in some rotation matrices, we have that

A =

1 0 0

0 cos(−θx) − sin(−θx)

0 sin(−θx) cos(−θx)


 cos(θy) 0 sin(θy)

0 1 0

− sin(θy) 0 cos(θy)


gives us the rotation we need to apply to ẑ to point it at a given pixel coordinate on
the viewing window.12 So, Aẑ gives us a unit vector pointing in the direction of our
light ray, and Ax̂ and Aŷ are two orthogonal unit vectors that are also orthogonal
to each other.

Now that we have our ray and our sphere encoded as algebraic objects, all that’s
left is to find the intersection points between the two. This can be done by solving
the following system of equations:

axx+ ayy + azz = 0,

bxx+ byy + bzz = 0,

x2 + y2 + (z − 8)2 = 1,

where (ax, ay, az) and (bx, by, bz) are the orthogonal vectors to our light ray. The
easiest way to solve this is likely to isolate for x and y using the first two equations,
then plug them into the third equation and solve the resulting quadratic for z, using
that value to then get x and y. The expressions we’d get would be messy, but since
it’d be the code solving them and not us, it isn’t too big of an issue.

Note that, since we’d be solving a quadratic for z, we’ll (in general) get two inter-
section points between the ray and the sphere: the point where the ray enters the
sphere and the point where it exits. If we were going to extend the ray tracer to
include reflections, shadows, etc., we’d need to add an extra check in our code to
differentiate between these two points. This could be done by, for example, calcu-
lating the distance between the origin and the two intersection points and seeing
which point is closer (and is thus the first place the ray hit on the sphere).

We can imagine that, had the object we were rendering been a box or something
even more complicated, this process of solving for the intersection points would be
rather difficult. It may even be impossible to solve for intersections using an exact
formula if the resulting expressions are complex enough (e.g. if we had to solve
a degree five or higher polynomial instead of a quadratic). In these cases, we’d

12Once again, the specifics of this rotation matrix may vary depending on the implementation and
how exactly rotations are represented. The important part is that such a rotation matrix does
exist.
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resort to using something like Newton’s method or fixed point iteration to solve
the resulting equations. This is the crux of what makes ray tracing slightly more
difficult than ray marching: while we don’t need to repeatedly march a ray into a
scene to find an intersection, we do need to solve some rather unwieldy expressions.
Otherwise, the implementation of the two methods is very similar.

5. Applications

There are many, many applications for ray marching/ray tracing. Any time some
three-dimensional environment needs to be rendered on a computer screen, chances
are that ray marching/ray tracing can be used. However, seeing as there are literally
thousands upon thousands of computer programs out there, we can’t possibly list
every single example of where these techniques can be used. Thus, we’ll settle for a
few notable use cases.

5.1. Medical Imaging. The medical field takes a lot of scans of the human body.
MRI scans, x-ray scans, ultrasound scans, and retinal imaging are all examples.
Sometimes, it’s useful for a doctor or practitioner to be able to visualise these
scans in a way that allows them to view them from different angles, under different
lighting/colouring, etc. This sort of technology could make diagnosis easier for cases
where visual symptoms are the main “tell” for whatever they’re looking for.

So long as enough data is available, then ray tracing/ray marching can be used here
to create accurate renders of whatever scan has been taken (see figures 17 and 18).
More specifically, a modification of these techniques called volumetric ray casting
is typically used, where the volumes of objects are used for renders, not just the
surfaces as we did for our ray marcher (Adobe). However, the main techniques for
rendering the scene remain the same.

5.2. CGI Film/Animation. Another obvious usage of ray marching/tracing is in
3D animation and film. Since ray marching/tracing offers more realistic lighting
and rendering than other rendering techniques such as rasterization (Adobe), it’s
typically the method chosen by animation studios who want to create ultra-detailed
scenes and objects for their projects. Though, ray marching/tracing is also suit-
able for smaller-scale projects, too (see figure 19). A super-powerful, million dollar
computer isn’t necessary for using these techniques!13

13Though, it would definitely speed up the process, as creating the images for this project has
proven...
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Figure 17. From Wikimedia Commons (public domain). A CT scan
of a crocodile mummy with juveniles on its back, rendered using the
High Definition Volume Rendering® engine (Fovia, Inc).

Figure 18. Figure 2.28 from Paulin et al. [2011], showing a visuali-
sation of medical data by a volumetric ray caster.

5.3. Video Games. Perhaps the most common application of ray marching/ray
tracing in recent years is in video games. Because ray marching/ray tracing offers
more realistic lighting than other rendering techniques, and because it offers so many
benefits over other methods (such as those benefits listed in section 4.3), it’s been a
popular choice for game developers who want to push the limits of what’s graphically
possible in gaming (Adobe).

Ray marching can also push the limits of what objects are possible within gaming.
Inserting complex objects into a game world can be difficult for a variety of reasons.
Rendering the object may be difficult (e.g. finding a suitable SDF may be cumber-
some). As well, adding collision detection (which allows game objects to interact and
collide with the object) may be computationally expensive. Imagine, as an example,
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Figure 19. An example of the types of scenes possible for a regular
person to whip up on a computer using ray marching. The animation
this frame is taken from consists of only 4096 bytes of data! This
frame comes from the animation “Ixaleno” (2008) by Inigo Quilez
(https://youtu.be/XAWPCmVC5jA). The render was good enough
to win first prize at the demoscene art show Breakpoint 2008, hosted
in Bingen, Germany. See Quilez [b].

a bird flying through the branches of a tree. If we wanted to write code so that the
bird would be able to land on any of these branches, we’d have to check every single
branch for collisions between the branch and the bird’s talons! Not only that, but
we’d have to do this for every frame of the game (so, likely thirty times a second)!
That’s a lot of computation, especially for large trees with hundreds of intertwining
branches! With the right setup, however, ray marching allows such complexities to
be implemented.

A perfect example of ray marching being used for this purpose is in the game Marble
Marcher (CodeParade [2019]). The premise of the game is simple enough: manoeu-
vre a marble through a series of obstacles towards a goal post. What makes this
game special is its choice of obstacles. The environments on which the marble rolls
are three-dimensional, dynamically changing fractals, rendered in real-time using
ray marching. Even more impressive, the game’s marble can actually roll around on
this surface. The fractals are not only rendered, but are a physical object you can
interact with in the game!

Ray marching is the key to making this game work. Because fractal objects are
self-similar, the SDFs that define these objects will also, inevitably, possess some
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Figure 20. An example of the types of terrain encountered in Marble
Marcher. Image taken from CodeParade [2019].

amount of self-similarity. So, rather than having to perform unique computations
for every point on a fractal object, computations can be performed on a small subset
of the object, then extrapolated to construct the entire environment!

We can demonstrate this principle in our own ray-marching code. Say we wanted to
render an infinite grid of spheres, rather than the single sphere we’ve used up until
now. Rather than try and program an infinite number of spheres into our code, we
can make a slight modification to the coordinate space to achieve the same effect.
Instead of letting our rays wander around the entire space, we’ll confine them to
a small box around the sphere. When a ray tries to exit this box, we’ll “wrap” it
around back into the box, sort of like the old video game Asteroids (where if you
leave the screen on one edge, you’ll reappear on the opposite edge). With this slight
change, our basic sphere from before is suddenly duplicated off to infinity (see figure
21).

This same principle is used in Marble Marcher, just with more sophisticated tech-
niques. Marble Marcher and its seamless integration of complex environments into
its world is yet another example of the power of ray marching. Something which
seems impossible to implement—infinitely-detailed fractal objects, complete with
real-time rendering and collision detection—is made possible through ray marching.
Even more impressive, ray marching allows games like Marble Marcher to run on
any old computer, speaking to the efficiency of the method.
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Figure 21. The same sphere as in figure 13, just with a modular
reduction applied to the coordinates of our light rays. Note that the
lighting isn’t quite right in this render: the same lighting effect is
applied to all spheres, even though they’re in different points in space,
and so the light should be hitting them in different places. This is
simply a result of the way in which the modular reduction was applied
for this example. The lighting can be corrected with a few slight
modifications.

6. Conclusion

Hopefully, after following the implementation of our basic ray marcher, and after
seeing some of the method’s many, many applications, we can appreciate how a sim-
ple technique borrowed from Renaissance painters gives rise to some truly stunning
imagery. By encoding objects in a scene as algebraic equations, and applying some
formulas for computing distances between these objects, ray marching (and ray trac-
ing) allow us to construct almost any scene we can imagine. Things like lighting,
object distortion, and object replication are easily added to this basic framework, al-
lowing more realistic images to be produced with far less effort than other rendering
techniques would require. Harnessing this power has allowed us to make animated
films, video games, detailed medical imagery, and, as is the case with centuries-old
artists, realistic-looking paintings.

Three-dimensional rendering is an art form that’ll only continue to grow in popu-
larity, sophistication, and accessibility in the coming years. Advances in graphics
cards, artificial intelligence, and mathematical theory are constantly pushing the
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boundaries of what’s possible. The things we can render on home computers nowa-
days were unimaginable only a few short years ago.14 It’s likely that this trend will
continue: the things possible now with high-end PCs could potentially become the
baseline for all computers in a few years. Though, we can be sure that ray march-
ing/ray tracing will be involved, as no other method captures the properties of light
quite so accurately, and no other method can be abstracted to mathematical models
quite as elegantly.

Appendix A. MATLAB Code

dist_to_sphere.m:
function [ d i s t ] = dist_to_sphere ( sphere , posVect , modular )
%DIST_TO_SPHERE C a l c u l a t e s the d i s t ance to a g iven sphere ’ s su r f a ce .
% C a l c u l a t e s the d i s t ance from posVect to the su r f a c e o f the sphere
% de f ined by sphereVect ( the cen ter ) and sphereRadius ( the rad ius ) . The
% func t i on throws an excep t i on i f the arguments g iven are o f the
% i n c o r r e c t type ( e i t h e r 3D v e c t o r s f o r sphereVect and posVect or a
% p o s i t i v e s c a l a r f o r sphereRadius ) .

%For demonstrat ing how an i n f i n i t e g r i d o f o b j e c t s can be crea t ed
i f nargin < 3

modular = f a l s e ;
end

%Ext rac t ing p r o p e r t i e s from sphere
sphereVect = sphere . c en t e r ;
sphereRadius = sphere . r ad iu s ;

%Making sure parameters are c o r r e c t
i f ( s ize ( sphereVect ) ~= 3)

throw ( MException (” Vector : DimensionError ” , ” Sphere ’ s c en t e r ” + . . .
” i s o f i n c o r r e c t dimension ( should be 3 ) . ” ) ) ;

end
i f ( s ize ( posVect ) ~= 3)

throw ( MException (” Vector : DimensionError ” , ”Given p o s i t i o n ” + . . .
” i s o f i n c o r r e c t dimension ( should be 3 ) . ” ) ) ;

end
i f ( sphereRadius < 0)

throw ( MException (” Sca la r : RangeError ” , ” Radius %s must be ” + . . .
” p o s i t i v e . ” , sphereRadius ) ) ;

end

14Something like Marble Marcher would only be a dream to computer scientists of the 1990s!
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i f modular == true
posVect = mod( posVect , 10) − 5 ;
posVect (3 ) = posVect (3 ) + 5 ;

end

d i s t = sum( ( sphereVect − posVect ) . ^2 )^ (1/2 ) − sphereRadius ;

%Apply any r e l e v a n t d i s t o r t i o n s
for i = sphere . d i s t o r t i o n s

i f i == ” r ibbed ”
d i s t = d i s t + 2^(−4)∗ sin (30∗ posVect ( 2 ) ) ;

end
end

end

dist_to_box.m:

function [ d i s t ] = dist_to_box ( boxCenter , boxSize , invBoxRot , posVect )
%DIST_TO_BOX C a l c u l a t e s the d i s t ance to a g iven box ’ s su r f a c e .
% C a l c u l a t e s the d i s t ance from posVect to the su r f a c e o f the box
% de f ined by boxCenter ( the cen ter ) , boxS i ze ( the dimensions ) , and
% invBoxRot ( the r o t a t i o n ) . The func t i on throws an excep t i on i f the
% arguments g iven are o f the i n c o r r e c t type .

%Making sure parameters are c o r r e c t
i f ( s ize ( boxCenter ) ~= 3)

throw ( MException (” Vector : DimensionError ” , ”Box ’ s c en t e r ” + . . .
” i s o f i n c o r r e c t dimension ( should be 3 ) . ” ) ) ;

end
i f ( s ize ( boxSize ) ~= 3)

throw ( MException (” Vector : DimensionError ” , ”Box ’ s s ize ” + . . .
” i s o f i n c o r r e c t dimension ( should be 3 ) . ” ) ) ;

end
i f ( s ize ( invBoxRot , 1) ~= 3 | | s ize ( invBoxRot , 2) ~= 3)

throw ( MException (” Matrix : DimensionError ” , ”Box ’ s r o t a t i o n ” + . . .
” i s o f i n c o r r e c t dimension ( should be 3x3 ) . ” ) ) ;

end
i f ( s ize ( posVect ) ~= 3)

throw ( MException (” Vector : DimensionError ” , ”Given p o s i t i o n ” + . . .
” i s o f i n c o r r e c t dimension ( should be 3 ) . ” ) ) ;

end
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%Firs t , t r a n s l a t e box to o r i g i n
tempPos = posVect − boxCenter ;

%Now, we undo the box ’ s r o t a t i o n
tempPos = ( invBoxRot∗tempPos ’ ) ’ ;

%Ca lcu l a t e d i s t a n c e s f o r po in t s both i n s i d e the box and o u t s i d e
i n s i d e D i s t = min( abs ( abs ( tempPos ) − boxSize ) ) ;
ou t s i d eD i s t = sqrt (sum(max( abs ( tempPos)−boxSize , 0 ) . ^ 2 ) ) ;

%Adding the s i gn to the output
i f ou t s i d eD i s t == 0

d i s t = −i n s i d e D i s t ;
else

d i s t = out s i d eD i s t ;
end

end

dist_to_cone.m:

function [ d i s t ] = dist_to_cone ( coneBase , . . .
coneHeight , coneRadius , invConeRot , posVect )

%DIST_TO_CONE C a l c u l a t e s the d i s t ance to a g iven cone ’ s su r f a c e .
% C a l c u l a t e s the d i s t ance from posVect to the su r f a c e o f the cone
% de f ined by coneBase ( the cen ter o f the base c i r c l e ) , coneHeight
% ( the h e i g h t o f the cone ) , coneRadius ( the rad ius o f the base ) and
% coneRot ( the r o t a t i o n ) . The func t i on throws an excep t i on i f the
% arguments g iven are o f the i n c o r r e c t type .

%For d e r i v i n g the SDF
%h t t p s ://www. desmos . com/ c a l c u l a t o r /ea4wwcfs4n

%There are d e f i n i t e l y more e f f i c i e n t ways to do t h i s , but I wanted to
% t r y and de r i v e t h i s myse l f .

%Making sure parameters are c o r r e c t
i f ( s ize ( coneBase ) ~= 3)

throw ( MException (” Vector : DimensionError ” , ”Cone ’ s base pos ” + . . .
” i s o f i n c o r r e c t dimension ( should be 3 ) . ” ) ) ;

end
i f ( s ize ( invConeRot , 1) ~= 3 | | s ize ( invConeRot , 2) ~= 3)

throw ( MException (” Matrix : DimensionError ” , ”Cone ’ s r o t a t i o n ” + . . .
” i s o f i n c o r r e c t dimension ( should be 3x3 ) . ” ) ) ;
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end
i f ( s ize ( posVect ) ~= 3)

throw ( MException (” Vector : DimensionError ” , ”Given p o s i t i o n ” + . . .
” i s o f i n c o r r e c t dimension ( should be 3 ) . ” ) ) ;

end

%Fl ip cone r i g h t s i d e up
posVect (2 ) = −posVect ( 2 ) ;

%Firs t , t r a n s l a t e cone to o r i g i n
tempPos = posVect − coneBase ;

%Next , we undo the box ’ s r o t a t i o n
tempPos = ( invConeRot∗tempPos ’ ) ’ ;

%Then , r o t a t e the scene so t h a t the po in t i s on the p o s i t i v e x−a x i s
angToX = atan ( abs ( tempPos (3 ) ) / abs ( tempPos ( 1 ) ) ) ;
i f ( tempPos (1 ) < 0) && ( tempPos (3 ) < 0)

angToX = pi + angToX ;
e l s e i f ( tempPos (1 ) < 0) && ( tempPos (3 ) > 0)

angToX = pi − angToX ;
e l s e i f ( tempPos (1 ) > 0) && ( tempPos (3 ) < 0)

angToX = 2∗ pi − angToX ;
end
invRot = [ cos (angToX) 0 sin (angToX ) ;

0 1 0 ;
−sin (angToX) 0 cos (angToX ) ] ;

tempPos = ( invRot∗tempPos ’ ) ’ ;

%tempPos shou ld now be a l i g n e d wi th the x−a x i s now .
%Ca l cu l a t e d i s t ance to cone .

%I f po in t i s above cone t i p
i f tempPos (2 ) > coneHeight

d i s t = sqrt ( tempPos (1)^2 + ( tempPos(2)− coneHeight ) ^ 2 ) ;

%I f po in t i s d i r e c t l y be low cone
e l s e i f ( tempPos (2 ) < 0) && ( tempPos (1 ) < coneRadius )

d i s t = abs ( tempPos ( 2 ) ) ;

%I f po in t i s be low cone , but not d i r e c t l y be low
e l s e i f tempPos (2 ) < 0
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d i s t = sqrt ( tempPos (2)^2 + ( tempPos(1)− coneRadius ) ^ 2 ) ;

%The genera l case
else

x_i = coneHeight + ( coneRadius / coneHeight )∗ tempPos (1 ) − tempPos ( 2 ) ;
x_i = x_i∗ coneHeight ∗ coneRadius /( coneHeight ^2 + coneRadius ^2 ) ;
y_i = ( coneRadius / coneHeight )∗ ( x_i − tempPos ( 1 ) ) + tempPos ( 2 ) ;
d i s t = sqrt ( ( tempPos(1)−x_i )^2 + ( tempPos(2)−y_i ) ^ 2 ) ;

end
end

signed_dist.m:

function [ d ] = s igned_di s t ( point , ob j e c t s , mode)
%SIGNED_DIST Given a s e t o f o b j e c t s , computes a point ’ s minimum
% signed d i s t ance to those o b j e c t s .
% d i s the d i s t ance to the o b j e c t s g i ven from the po in t g i ven .
% o b j s i s a s e t o f o b j e c t s in a scene . Each o b j e c t i s assumed to be a
% s t r u c t wi th a f i e l d named ” objec tType ” t h a t t e l l s the func t i on what
% kind o f o b j e c t i t i s . Based on th i s , the func t i on w i l l use the c o r r e c t
% func t i on to compute the d i s t ance to i t .
% The func t i on then computes the minimum of a l l t h e s e d i s t a n c e s and
% re turns i t .

%Union i s the d e f a u l t mode f o r the func t i on
%Thanks to Scot t , Peter Mortensen , and simon from
% s t a c k o v e r f l o w . com/ q u e s t i o n s /795823.
i f nargin < 3

mode = ” union ” ;
end

i f mode == ” union ”
d = Inf ;

e l s e i f mode == ” i n t e r s e c t i o n ”
d = −Inf ;

end

%Loop over a l l g i ven o b j e c t s
for i = 1 : s ize ( ob j ec t s , 2)

%Get t ing d i s t ance to t h i s p a r t i c u l a r o b j e c t
tempd = o b j e c t s { i } . sd f ( o b j e c t s { i } , po int ) ;

i f tempd < d && mode == ” union ”



A FRIENDLY INTRODUCTION TO RAY MARCHING 47

d = tempd ;
e l s e i f tempd > d && mode == ” i n t e r s e c t i o n ”

d = tempd ;
end

end
end

step_vector.m:
function [ newVector ] = step_vector (v , unitV , s t e p S i z e )
%STEP_VECTOR Returns a new vec to r who s tepped some number o f u n i t s in the
%given vector ’ s d i r e c t i o n from the g iven vector ’ s p o s i t i o n .
% Given a vec t o r v and a s t epS i z e , we re turn a new vec to r
% newVector = v + s t e p S i z e ∗e ,
% where e i s a un i t v e c t o r in the same d i r e c t i o n as v .
% The func t i on throws an error i f v i s the zero vector , or i f the
% given vec t o r i s a column vec to r .

v e c t S i z e = s ize ( v ) ;

%I f we ’ re g iven a column vec to r in s t ead o f a row vec to r
i f v e c t S i z e (1 ) > 1 && v e c t S i z e (2 ) ~= 1

throw ( MException (” Vector : DimensionError ” , ”Given vec to r ” + . . .
” cannot be a column vecto r . ” ) ) ;

end

%Now, l e t ’ s a c t u a l l y compute the new vec to r
newVector = v + unitV∗ s t e p S i z e ;

end

scrap.m:

%Some b a s i c ray marching code
%Heav i ly i n s p i r e d by Michael Walczyk ’ s t u t o r i a l a t
% h t t p s :// michae lwa lczyk . com/ b log −ray−marching . html .

%Inver t ed co l ou r s
INVERTEDCOLOURS = f a l s e ;

%For c a l c u l a t i n g normal v e c t o r s
NORMALSTEP = 10e −8;
XVECT = [NORMALSTEP 0 0 ] ;
YVECT = [ 0 NORMALSTEP 0 ] ;
ZVECT = [ 0 0 NORMALSTEP] ;
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%Colours
%BLACK = [0 0 0 ] ;
WHITE = [1 1 1 ] ;

% y x
imageDimensions = [480 6 4 0 ] ;
image = zeros ( imageDimensions ( 1 ) , imageDimensions ( 2 ) , 3 ) ;

i f INVERTEDCOLOURS
image = image + 1 ; %Making the scene whi te

end

%How fa r the imaginary screen i s in our scene
distToFrame = 5 ;

%How fa r a ray shou ld be a b l e to go b e f o r e we s top marching i t
drawDistance = 1000 ;

%How c l o s e a ray needs to ge t to be cons idered touch ing an o b j e c t
touchDist = 10e −4;

%Al l the o b j e c t s in our scene
%Each sphere i s r epre sen t ed as a coord f o r i t s cen t re and a rad ius
%Thanks to Dan , Amro, radarhead from s t a c k o v e r f l o w . com/ q u e s t i o n s /18189227
% fo r h e l p i n g s o l v e the ” t h i s ” problem
o b j e c t s = { s t r u c t (” objectType ” , ”sphere ” , . . .

” c en t e r ” , [−2 0 1 6 ] , . . .
” rad iu s ” , 1 , . . .
” d i s t o r t i o n s ” , [ ] , . . .
” sd f ” , . . .
@( t , p ) dist_to_sphere ( t , p ) ) . . .

s t r u c t (” objectType ” , ”box ” , . . .
” c en t e r ” , [ 0 0 2 0 ] , . . .
” s ize ” , [ 1 1 1 ] , . . .
” r o t a t i o n ” , [ 1 1 1/3 ] , . . .
” invRotMat ” , zeros (3 , 3 ) , . . .
” sd f ” , [ ] ) . . .

s t r u c t (” objectType ” , ” cone ” , . . .
” c en t e r ” , [ 3 , −0.5 , 2 0 ] , . . .
” he ight ” , 4 . 5 , . . .
” rad iu s ” , 1 . 4 , . . .
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” r o t a t i o n ” , [ 0 . 0 1 .1 0 . 8 ] , . . .
” invRotMat ” , zeros (3 , 3 ) , . . .
” sd f ” , [ ] ) } ;

%{
o b j e c t s = { s t r u c t (” objectType ” , ”sphere ” , . . .

” c en t e r ” , [ 0 0 1 2 ] , . . .
” rad iu s ” , 1 . 5 , . . .
” d i s t o r t i o n s ” , [ ] , . . .
” sd f ” , . . .
@( t , p ) dist_to_sphere ( t , p ) ) . . .

s t r u c t (” objectType ” , ”box ” , . . .
” c en t e r ” , [ 0 0 1 2 ] , . . .
” s ize ” , [ 2 1 0 . 8 ] , . . .
” r o t a t i o n ” , [ 0 0 0 ] , . . .
” invRotMat ” , zeros (3 , 3 ) , . . .
” sd f ” , [ ] ) } ;

%}
%{
o b j e c t s = { s t r u c t (” objectType ” , ”sphere ” , . . .

” c en t e r ” , [ 0 0 8 ] , . . .
” rad iu s ” , 1 , . . .
” d i s t o r t i o n s ” , {” r ibbed ”} , . . .
” sd f ” , . . .
@( t , p ) dist_to_sphere ( t , p ) ) } ;

%}

%The l i g h t sources in our scene
l i g h t s = { s t r u c t (” l ightType ” , ” po int ” , . . .

” c en t e r ” , [−5 −10 3 ] ) } ;

%How much t h i n g s are l i t up i f they aren ’ t d i r e c t l y h i t by a l i g h t
ambientLight = 0 . 0 ;

%Do any necessary precomputat ion on our o b j e c t s
for i = 1 : s ize ( ob j ec t s , 2)

i f o b j e c t s { i } . objectType ~= ”sphere”
%Precomputing inv e r s e r o t a t i o n matr ices
% then b ind ing i t to SDF
objRot = o b j e c t s { i } . r o t a t i o n ;
zInvRot = [ cos(−objRot ( 3 ) ) −sin(−objRot ( 3 ) ) 0 ;

sin(−objRot ( 3 ) ) cos(−objRot ( 3 ) ) 0 ;
0 0 1 ] ;
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yInvRot = [ cos(−objRot ( 2 ) ) 0 sin(−objRot ( 2 ) ) ;
0 1 0 ;
−sin(−objRot ( 2 ) ) 0 cos(−objRot ( 2 ) ) ] ;

xInvRot = [ 1 0 0 ;
0 cos(−objRot ( 1 ) ) −sin(−objRot ( 1 ) ) ;
0 sin(−objRot ( 1 ) ) cos(−objRot ( 1 ) ) ] ;

o b j e c t s { i } . invRotMat = zInvRot∗yInvRot∗xInvRot ;

%Bind SDF to inv e r s e r o t a t i o n matrix
i f o b j e c t s { i } . objectType == ”box”

o b j e c t s { i } . sd f = . . .
@( t , p ) dist_to_box ( t . center , t . size , t . invRotMat , p ) ;

e l s e i f o b j e c t s { i } . objectType == ” cone ”
o b j e c t s { i } . sd f = . . .
@( t , p ) dist_to_cone ( t . center , t . he ight , t . rad ius , t . invRotMat , p ) ;

end
end

end

%Get t ing r e l a t i v e s c a l i n g f o r the edges o f the v i r t u a l screen
%Bas i ca l l y , how much f a r t h e r one d i r e c t i o n do we have to go over another
%when c r e a t i n g p ixe lRays ?
p e r c e n t D i f f = max( imageDimensions )/min( imageDimensions ) ;

%Is the image wider on the x or y d i r e c t i o n ?
i f ( imageDimensions (1 ) > imageDimensions ( 2 ) )

biggerDimension = ” c o l ” ;
rowShi f t = −1;
c o l S h i f t = −p e r c e n t D i f f ;

else
biggerDimension = ”row ” ;
rowShi f t = −p e r c e n t D i f f ;
c o l S h i f t = −1;

end

p i x e l I n c = 2/min( imageDimensions ) ;

%Now, i t e r a t e over a l l p i x e l s in our image ,
% shoot out a ray through t h a t p i x e l and see where i t goes .
for c o l = 1 : imageDimensions (1 )

for row = 1 : imageDimensions (2 )
%Create d i r e c t e d ray through p i x e l
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rowPlace = ( row −0.5)∗ p i x e l I n c ;
c o lP l a c e = ( co l −0.5)∗ p i x e l I n c ;

%Do we need to worry about the zero vec t o r here ?
pixelRay = [ rowShi f t+rowPlace c o l S h i f t+co lP l a c e distToFrame ] ;
unitRay = pixelRay . / sqrt (sum( pixelRay . ^ 2 ) ) ;

%Keep marching u n t i l ray goes pas t our draw d i s t ance range ,
% or i t h i t s something .
while pixelRay (3) < drawDistance

distToScene = s igned_di s t ( pixelRay , o b j e c t s ) ;

%I f the ray i s c l o s e enough , draw !
i f abs ( distToScene ) <= touchDist

%Now, l e t ’ s c a l c u l a t e some b a s i c l i g h t i n g

%Get normal v e c t o r
normalX = s igned_di s t ( pixelRay + XVECT, o b j e c t s ) − . . .

s i gned_di s t ( pixelRay − XVECT, o b j e c t s ) ;
normalY = s igned_di s t ( pixelRay + YVECT, o b j e c t s ) − . . .

s i gned_di s t ( pixelRay − YVECT, o b j e c t s ) ;
normalZ = s igned_di s t ( pixelRay + ZVECT, o b j e c t s ) − . . .

s i gned_di s t ( pixelRay − ZVECT, o b j e c t s ) ;
normalRay = [ normalX , normalY , normalZ ] ;
unitNormalRay = normalRay . / sqrt (sum( normalRay . ^ 2 ) ) ;

%Find maximum dot product between unitNormalRay and l i g h t s
%In order to do g l o b a l shading , I ’ d have to run a second
% loop through the ray marching a l gor i thm here , j u s t wi th
% the normal v e c t o r
dot = −1;
for i = 1 : s ize ( l i g h t s , 2)

i f l i g h t s { i } . l ightType == ” point ”
toLight = l i g h t s { i } . c en t e r − pixelRay ;
unitToLight = toLight . / sqrt (sum( toLight . ^ 2 ) ) ;
dot = max(dot , sum( unitNormalRay . ∗ unitToLight ) ) ;

end
end

%Using dot c a l c u l a t e d above , co lour the sphere based
% on the i n t e n s i t y o f l i g h t h i t t i n g i t .
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i f ~INVERTEDCOLOURS
image( c o l : co l , row : row , : )=max(WHITE∗dot , ambientLight ) ;

else
image( c o l : co l , row : row , : ) = min(1−ambientLight , . . .

1−WHITE∗dot ) ;
end
break ;

else %Otherwise , march
pixelRay = step_vector ( pixelRay , unitRay , distToScene ) ;

end
end

end
end

%Write out image data to f i l e
imwrite ( image , ” t e s t . png ” ) ;

%Show the image
imshow (” t e s t . png ” ) ;
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