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AN INTRODUCTION TO NONTRANSITIVE GAMES 3
1. INTRODUCTION

For many games, there exist “things” that are more “powerful” than all other
“things”. What exactly these “things” are will vary depending on the game. Take,
for instance, the game of poker. The rarity of a poker hand dictates its power. The
royal flush—an ace, king, queen, jack, and 10, all of the same suit—is the rarest of
all named hands, and is thus the most powerful, beating all other hands. The second
rarest is the straight flush—a sequence of five numerically consecutive cards of the
same suit—and is thus the second most powerful, beating all hands except the royal
flush. The third most powerful hand—the four-of-a-kind—beats all hands except
the royal flush and straight flush. This pattern continues, with each named hand

beating all hands more common than it, yet losing to all hands less common.

As another example, take the game Scrabble. Ignoring any score bonuses resulting
from specific tile placements on the board, each valid Scrabble word is given a score
based on the letters that compose it. If the power of a word is taken to be its score,
then all valid Scrabble words can be ranked according to their power. Thus, there
must be (at least) one word sitting at the top of this hypothetical hierarchy which

is at least as powerful as every other word.!

The specifics regarding these most powerful “things” aren’t important in these ex-
amples. What 4s important to recognise is that these most powerful “things” exist
at all. Initially, this observation seems obvious. After all, in any situation where
objects can be ranked in terms of power (whatever that definition of power may be),
it seems reasonable, maybe even trivial, to assume that one object must be more
powerful than the rest. There are endless examples of such situations. If we take
our definition of power to be preference—that is, out of a set of objects, the one
that people prefer to choose the most often is deemed the most powerful—then any
plurality-based election system can be viewed as an example of such a situation.
Clearly, elections always result in one candidate being ranked the highest, and thus
attaining office. It seems pointless, therefore, to draw attention to the existence of

a “most powerful” object.

However, there’s a very good reason for considering these “most powerful” objects:
they don’t always exist. In fact, some of the most common situations where objects
are ranked by some form of power don’t always have a “most powerful” object...
including the plurality-based election system mentioned above! This isn’t merely
the case of a tie, either. There are certain situations where, when pairing together
any two different objects, there will always be one object which is more powerful,

'According to scrabblewizard.com, ref [2023] the most powerful Scrabble word is oxyphenbuta-
zone, worth 41 points.
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but when considering all the objects together, there isn’t a clear answer for which

object is the most powerful.

This project aims to introduce the concept of a “nontransitive” game, showing how
the property of “nontransitivity” can give rise to counter-intuitive situations where,
despite a clear notion of “power” existing, no one object can be considered the most
powerful. Some specific games will be introduced and explained in sections 3-5 and
7, paying extra attention to aspects of the games that are nontransitive. Along the
way, some specific results will be referenced or proved relating to optimal strategies
and surprising properties that arise as a result of nontransitivity. Then, section
8 aims to detail some real-world consequences related to nontransitivity, such as

voting paradoxes and cyclical food chains.

Ultimately, this project aims to demystify the apparent contradictions of nontran-
sitivity, instead showing how it is a very natural property that arises in systems
involving object comparisons. This project also aims to be as self-contained as

possible, though numerous references are provided for the curious reader.

2. TRANSITIVITY

Before tackling the seemingly-strange situations involving nontransitivity, it helps

to first refresh our memory on the concept of transitivity.

Say we're given a set of characters
C={0,0 ¢, x, 8}
where each character has a designated credit score:

© has a credit score of 44.
@ has a credit score of 17.
£ has a credit score of 0 (because cell phones don’t have credit scores).
% has a credit score of 64.

® has a credit score of 67.

If a,b € C, then we say "a > b” if a has an equal or higher credit score than
b. Similarly, we say "a < b” if a has an equal or lesser credit score than b. For

instance, the following two statements are true:
H<O, O<x*

Given our credit-score-comparing relation “<” we can ask whether it is transitive

or not. Any relation “R” is said to be transitive if, given any three objects a, b, and
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¢, the following statement is always true:

If aRb and bRe, then aRe.

In other words, if a is related to b, and b is related to ¢, then it must be the case

that a is related to c.

For our credit score example, we can see that the "<” relation is indeed transitive.
From above, we saw that

» <O
since the phone’s credit score of 0 is less than the smiley’s credit score of 44. Simi-
larly, we also saw that

© <%
since the smiley’s credit score is less than the star’s credit score of 64. Then, it’s
clear to see that

P < %
since the phone’s credit score was less than the smiley’s, which was a lesser value
than the star’s, implying that the phone’s credit score must necessarily be lower

than the star’s. It’s easy to verify that this logic holds for any characters in the set
C. Therefore, if a,b,c € C' and we have that

a<bandb<c,

then it must be the case that

a <c.

This means our ”<” relationship is transitive.

Transitive relationships are fairly common. A simple example of a transitive relation
is height comparison. If Alice is taller than Bob, and Bob is taller than Chris, then
it must be the case that Alice is taller than Chris (see figure 1).

The reason for introducing transitivity via our convoluted character set C is to
demonstrate how transitive relations can be defined on any objects we wish, be
them numbers, words, political figures, etc. No matter how complicated the setup,
as long as our defined relation obeys the criteria for being transitive, it’s transitive.
Similarly, if the relation doesn’t obey the criteria for transitivity, it isn’t transitive,

no matter how much it seems to be transitive.

Once we've confirmed that a relationship is transitive, we can use the relationship

to impose a sort of ranking on our objects.? From the table of credit scores given

2If there are certain objects in our set that can’t be directly compared using the relevant transitive
relation—as may be the case for a preference relationship where preferences for certain objects
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FIGURE 1. From left to right: Alice, Bob, and Chris. Clearly, Alice
is taller than Bob, and Bob is taller than Chris. Because height com-
parisons are transitive, we can conclude that Alice is taller than Chris.

for our characters, it isn’t difficult to see that the following relationship holds:
P<P<O< KO

From this, we can conclude that @ has the highest credit score, and is therefore
the “highest ranked” using our credit score relation. The next highest would be
%, who beats all characters except for @. This situation mirrors the case of poker
hands described in section 1, where all objects can be put onto a hierarchy with
the “more powerful” object resting at the top. Whenever we have a transitive
relationship, there naturally arises such a hierarchy, and thus a most powerful object

also arises.

However, it’s important to note that there are plenty of relationships that are not
transitive. Romantic relationships happen to be one such relationship. If Alice loves
Bob, and Bob loves Chris, we cannot then conclude that Alice loves Chris. Section

8 of this project delves into some more non-game examples of nontransitivity.

We conclude this section by recognising that both transitive and nontransitive re-
lationships are not only possible, but reasonable. While there may be reasons for
believing a certain relationship to be transitive, unless it’s consistent with the defi-
nition of transitivity above, we cannot assume transitivity. In the next section, we’ll
introduce a relationship between dice that’ll help us analyse a particular game and

determine which player in this game has a better chance of winning. Although this

are unknown or unspecified, for instance—creating a ranking among objects may become more
complicated. The relationships considered in this project will never have this problem, though, so
we can safely ignore this nuance.
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new relationship we introduce may seem obviously transitive at first, we’ll show that

this assumption is false.

3. EFRON DICE

3.1. A Simple Game of Dice. Let’s say a friend approaches us with a set of dice
and asks to play a game.?> The game is deceptively simple. Both players choose a
die. Once the dice are chosen, the players roll them at the same time. Whoever’s
die displays the highest number face-up wins. This friend is supposedly feeling quite
generous today and allows us to pick our die before they do. Looking at the available

dice, we notice that they happen to be quite unusual:

3 6 ] 1]
313[3] [2]2]2] [5]5 5] [4]4]4]
3 2 1 0
3 6 1 0
A B C D

FI1GURE 2. The nets for the four Efron Dice, named after the statis-
tician Brad Efron who created them.

Looking at these dice, it’s reasonable to assume that there must exist some “most
powerful” die—that is, one that gives us the highest probability of rolling a number
higher than our friend’s die, whichever they happen to choose. However, as we've
been thrown into this game so quickly, we have no time to calculate any of the

probabilities.

Suppose we choose die A, maybe because it seemed more “balanced” than the others.
Our friend then chooses die D, and we play a few rounds. After nine rolls of the
dice, our friend has won six of the nine rolls—about 67%. While this percentage
is somewhat close to a fair 50% (which we would expect if both dice had the same
probability of winning), it’s enough to suggest that maybe our friend’s die has the
advantage. So, we ask to use our friend’s die. Surprisingly, they agree! Our friend

then swaps to using die C', and we play a few more rounds.

Frustratingly, the same imbalance exists; our friend is still winning about 67% of
the time. In vain, we try swapping to the other two dice, but it doesn’t make a

difference.

3This particular game is derived from Grime [2017].
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Finally, we admit defeat. Our friend walks away with the glory, leaving us to

brood.*

Thankfully, however, we happen to have a sharp memory and can remember exactly
what the four dice looked like. We decide to do a few probability calculations to
figure out exactly which die is the “more powerful” one. From our observations,
it appeared that the dice, while having unusual numbering on their faces, weren’t
rigged in any way. Each face on each die was equally likely to land face-up. Each
die had six faces, so we’d expect that each face appears face-up a sixth of the time.
More formally, if D represents the outcome that a particular face on our die lands

face-up, then this probability can be expressed as

for each possible outcome D of the die.’

As well, since the outcome of one die didn’t affect the other, our friend’s die was
independent of our own. Therefore, if D; represents the outcome of our die roll, and
D, represents the outcome of our friend’s die roll, then

1 1 1
P(D1 N Dg) = P(Dl)P(DQ) = 6 X 6 = %’

and so the probability that each pair of faces lands face-up is as likely as any other

pair of faces landing face-up.®

This gives us a relatively simple way to compare dice to each other: since each
possible pair of outcomes between the two dice has an equal chance of occurring, if
we list out all these pairs and count how many times one die rolls higher than the
other (and vice versa), we can explicitly calculate which of the two dice rolls higher

more often, i.e. which die is “more powerful”.

4The author would like to apologise in advance for the dramatics.

SHere, we're implicitly using what’s called the principle of indifference to assign probabilities to
each outcome. The principle of indifference states that, when we have n possible outcomes and no
reason to believe that one outcome should be more likely than any other, we assign each outcome a
probability of % so as to ensure that each outcome is equally likely, and to ensure that our defined
probabilities are consistent with the probability axiom that P(S) = 1 for our sample space S (see
Weisstein [2023]). Here, the principle applies since each die is fair, meaning the likelihood of any
outcome occurring must be as likely as any other outcome occurring. See pages 288-291 of Gardner
[2001] for a more in-depth consideration of this principle.

OIntuitively, this can be interpreted as: for every outcome of the first die, there’s a %th chance of
it occurring. When that outcome does occur, there’s yet another %th chance for the second die,
since the first outcome occurring doesn’t affect what outcome the second die will have. So, for %th
of the time, we’d expect that %th of that time, both outcomes will occur, and %th of %th of the
time is £ x & = 3—16. In effect, independence of two events implies that the probability that both of

6”6
them will occur is the product of their individual probabilities of occurring.
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3.2. Constructing a Hierarchy of Dice. Equipped now with a thorough-enough
understanding of the dice game, we begin creating tables of possible pairs of dice
rolls to determine which die we should use the next time our friend challenges us.

For convenience, we’ll refer to these tables as “outcome tables”.

Let’s start by comparing die A and die B (see figure 2). If the tuple (Dy, Ds)
represents the result of a pair of dice being rolled, where D, is the outcome of the
first die and D5 is the outcome of the second die, then for die A and B, the following

dice roll outcomes are possible:

2,3) (2,3) (2,3) (2,3) (2,3) (2,3
2,3) (2,3) (2,3) (2,3) (2,3) (2,3
2,3) (2,3) (2,3) (2,3) (2,3) (2,3

DD O NN NN
A~ N /N A/~ /S
DO
w
e N N N N
A~ N /N A/~ /—~
DO
w
— — ~— ~— ~— ~—
A~ N /N /N /N o/
[\
w
— — — — ~— ~—
A~ N /N /N A/~
[N}
w
— — — — ~— ~—

o o
w w
o o
W w
o o
w w
o o
W w

Here, the first entry of each tuple represents the roll of die B, while the second entry
represents the roll of die A (as denoted by the top-left cell of the outcome table).
Simply by counting the number of tuples where die A’s roll is higher than die B’s,
we see that die A beats die B in 24 out of the possible 36 outcomes. Because each
outcome is equally likely, we can write that
24
P(A> B) = 36
where P(A > B) denotes the probability that die A’s roll is greater than die B’s

roll. Similarly,
12

It seems that die A is “more powerful” than die B, in the sense that die A is
more likely to roll higher than die B. To represent this, we’ll use the following
notation:

A= B.

Now, let’s compare the relative powers of die B and die C. Creating an outcome
table for dice B and C', we get
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X2 2 2 2 6 6
11(1,2) (1,2) (1,2) (1,2) (1,6) (1,6)
11(1,2) (1,2) (1,2) (1,2) (1,6) (1,6)
10(1,2) (1,2) (1,2) (1,2) (1,6) (1,6)
50(5,2) (5,2 (5,2) (5,2) (5,6) (5,6)
50(5,2) (5,2) (5,2) (5,2) (5,6) (5,6)
50(5,2) (5,2) (5,2) (5,2) (5,6) (5,6)

Again, simply by counting how many times the roll of die B is higher than the roll
of die C', we get that

24

P(B>C)=—

(B>C) %6

and 19
P B)=—

(€>B)=5,,

so die B is more powerful than die C'. Using our notation introduced above, we see
that
A= B> C.

Now, creating another outcome table for dice C' and D, we get the table

X 1 1 1 5 5 5
0](0,1) (0,1) (0,1) (0,5) (0,5) (0,5)
0](0,1) (0,1) (0,1) (0,5) (0,5) (0,5)
41(4,1) (4,1) (4,1) (4,5) (4,5) (4,5)
414, 1) (4,1) (4,1) (4,5 (4,5) (4,5)
41(4,1) (4,1) (4,1) (4,5) (4,5 (4, 5)
41(4,1) (4,1) (4,1) (4,5) (4,5) (4,5)

with corresponding probabilities

24

P(C >D)=—

(C>D) %6

and 19
P(D>C)=—.

(D>0C) =355

Therefore, die C' is more powerful than die D, thus completing our hierarchy of
dice:
A=B>~C>D.

From this, it seems die A is the best possible choice. From our calculations, we
see that, against die B, we should expect die A to win about 67% of the time, the
exact win percentage our friend was achieving! This is good news; it seems we've

completely figured the game out. Out of curiously, we may wonder how often we’d
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expect die A to win against die C. Maybe 70% of the time? 80%? Even higher?
It’s a simple enough thing to check. All we have to do is create another outcome

table and count how many times die A beats die C"

X3 3 3 3 3 3
11(1,3) (1,3) (1,3) (1,3) (1,3) (1,3)
10(1,3) (1,3) (1,3) (1,3) (1,3) (1,3)
10(1,3) (1,3) (1,3) (1,3) (1,3) (1,3)
5(5,3) (5.3) (5,3) (5,3) (53) (5, 3)
5/(5,3) (5,3) (5,3) (5,3) (5,3) (5, 3)
5/(5,3) (5,3) (5,3) (5,3) (5,3) (5,3)

This time, however, there isn’t a clear winner, as

18

P(A>C)=—

(A>0) 36

and 18
P A)=—.

(C>A) v

The probability that die A beats die C' is equal to the probability that die C' beats
die A. This seems... wrong. If A > B, and B > C, then why isn’t it the case that
A = C7 Maybe we should use a different relative power comparison, something
like

As B C = D.
Here, A = B means die A is at least as powerful as die B. Using this notation solves

our apparent problem: A = B, B »= C, and A = C, as we expect.

After seeing that dice A and C' are equally powerful against each other, we may
wonder about the probability of die A beating die D. Making the outcome table

and counting, we get the table

X3 3 3 3 3 3
01](0,3) (0,3) (0,3) (0,3) (0,3) (0,3)
01](0,3) (0,3) (0,3) (0,3) (0,3) (0,3)
41(4,3) (4,3) (4,3) (4,3) (4,3) (4,3)
41(4,3) (4,3) (4,3) (4,3) (4,3) (4,3)
41(4,3) (4,3) (4,3) (4,3) (4,3) (4,3)
41(4,3) (4,3) (4,3) (4,3) (4,3) (4,3)
and the corresponding probabilities
12
P(A> D)= —

36



12 ZACH STRONG

and 04
P(D>A)=—.

( ) =35

This... also seems wrong. From the table, we can clearly see that die D is more pow-

erful than die A. However, from our established hierarchy of dice, we see that
A=B>=C%=D,

so die A should be more powerful than die D.

What’s going on here? From direct calculations, we know that A = B, B »= C, and
C »= D, yet D »= A! No matter which die is chosen out of the bunch, there will

always exist another die that’s more powerful!

Suddenly, our friend’s game makes a lot more sense. By allowing us to choose our die
first, our friend was ensuring that they could choose the die that was more powerful

than ours. Our friend wasn’t being generous at all!

4. NONTRANSITIVITY

After the initial rage of being duped by our friend passes, we take a step back
and reflect on the strange structure of the game itself. How is it possible that no
single die is better than all the rest? What is it about our particular notion of
“powerful dice” that disallows a hierarchy to be created? The computations we did
were certainly correct. From the tables we created, it’s obvious that die A is indeed
more powerful than die B—it rolls higher more often—and die B is certainly more
powerful than die C'. However, from the same tables, we see that dice A and C' are

equally matched; both have an equal probability of beating the other.

In our original notation, we have that
A> Band B > C,

but
A# C,

where “%” represents a die not being more powerful than another. From our defi-
nition of transitivity in section 2, then, our “powerful dice” relation isn’t transitive.
Because of this, the fact that

A-B>=C» D,

but
A¥ D,
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is perfectly valid. Without transitivity, there’s no reason why die A must necessarily

be more powerful than die D.

All of this may feel extremely counter-intuitive. It seems blatantly obvious that one
die should have an inherent advantage over all others, yet our outcome tables show

that each die will always be inferior to at least one other die.

However, after a bit of pondering, we realise that the “nontransitivity” of our friend’s
dice game isn’t so strange after all. There are plenty of games where objects can’t be
nicely organised into a hierarchy. One extremely common game with this property
is Rock, Paper, Scissors, where two players simultaneously choose between three
objects—a rock, a sheet of paper, or a pair of scissors—to attack the other player
with.

If rock is chosen, paper can cover it, so paper is more powerful than rock. If paper
is chosen, scissors can cut it, so scissors are more powerful than paper. However,
scissors aren’t more powerful than rock, since rock can crush scissors. No matter
which object one chooses, there always exists another object which is more powerful

than the one chosen.”

The dice game, then, is just another example of such a nontransitive situation. In
fact, if we draw a diagram similar to figure 3 for the set of dice used in our game,
we’ll see that the behaviour of the dice, in terms of which die is more likely to beat

"For a more in-depth analysis of Rock, Paper, Scissors and other explicitly-nontransitive games,
see section 3.1 of Klimenko [2015].

FIGURE 3. The three “objects” of Rock, Paper, Scissors. The arrows
indicate which objects beat which. Starting from the top and working
clockwise, rock beats scissors, scissors beats paper, and paper beats
rock. As no one object is more powerful than all the others, the
“power” relation here is nontransitive.
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FIGURE 4. The four Efron Dice. The arrows indicate which die is
“more powerful” than the other. For example, die A is more powerful
than die B. As with Rock, Paper, Scissors, no one object is more
powerful than all the rest, so the “power” relation here is nontransitive.

which, is nearly identical to the case of Rock, Paper, Scissors, just with four objects
rather than three.

As soon as we acknowledge that such power relations (as we’ve defined for the dice)
need not be transitive, all confusion disappears. The structure of figure 4 is fairly
common (as Rock, Paper, Scissors demonstrates) and easy to understand. The
counter-intuitive nature of this dice game arises solely from the assumption that we
should be able to rank a die’s power using some transitive relation on pairs of dice.

Hopefully, we can start to see why assuming transitivity isn’t always justified.

However, despite the assumption of transitivity in our dice game being false, it’s a
common-enough assumption to make. The assumption is so common, in fact, that
in the 1990s, a US patent was filed by Robert Page for a particular dice game to be
played in casinos which took advantage of this very assumption. This game made
use of nontransitivity within sets of dice so that, if players entered the game with
the assumption of transitivity, they would be unable to properly deduce optimal
strategies and odds of winning. From column 3, line 9 of Page [1992], Page’s dice

game

advantageously utilizes one or more sets of [nonltransitive dice in
order to ensure that a player may bet on any die or any of the available
dice combinations and still leave a die or dice combination available
for the “house” (i.e. casino) which is more likely to win than the

player’s selection.
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This was the exact strategy employed by our friend in getting us to play their dice

game.

5. DOUBLE WHAMMY DICE AND OTHER VARIANTS

5.1. Won’t Be Fooled Again. Equipped with a better understanding of the dice
game introduced in section 3, we confidently accept our friend’s invitation to another

game. This time, they've brought a new set of dice—three instead of four.

3 [2] 1
[3]6[3] [5][5]5] [4]4
3 2 4
3 2 4

4]

X Y Z

F1GURE 5. The nets for our friend’s three new dice. This particular
set of dice was taken from Grime [2017], in which no particular name
was given to them. So, borrowing from the header under which they
were introduced, we’ll refer to these dice as the “Double Whammy
Dice” for the remainder of the project.

However, this time we aren’t going to be fooled. Putting our fist down, we demand
that our friend picks their die first. Surprisingly, they agree! Immediately, we're
suspicious of this, but we reluctantly continue. Perhaps our friend doesn’t know

that we're aware of the game’s nontransitivity?

Our friend chooses die X (figure 5). Performing the same outcome table calculations
as before, we see that P(X >Y) =2 P(Y > Z) =2 and P(Z > X) = £ In our
fancy notation, we can describe these probabilities as

X>=Y=Z>X.

Therefore, we choose die Z, as according to the above probabilities, die Z rolls
higher than die X in 25 of the 36 possible outcomes.

With the dice selected, our friend makes a suggestion: instead of each player rolling
one of each die, each player rolls two of the same dice, just to make things more
interesting. When each player’s two dice are rolled, their face-up values are summed,
and the player with the higher sum wins. Our friend presents the second set of dice
and, after a close inspection, we decide that they are, in fact, identical to the first
set. Thus, we agree to rolling two of the same dice. After all, how could it be any

different than just rolling one of each die twice? We know die Z is more likely to
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roll higher than die X, so we should still have the advantage, no matter how many

dice each player rolls... right?

We dismiss these extra rules as distractions. Surely our friend is simply trying
to make the game seem more complicated so that we second-guess our strategy.

However, our strategy is fool-proof, so we play.

Unfortunately, luck doesn’t seem to be on our side. After many games, our friend
seems to be winning slightly more than we are. Is this just the result of random
chance? To be sure, we ask our friend to switch their dice. They decide to roll two of
die Y. From our calculated probabilities, we choose to roll two of die X. However,
even with this new selection, our friend is still beating the odds: they seem to be

winning more often than us.

Once our friend is satisfied with their number of accumulated wins over us, they call
it quits, leaving us to wonder, once again, how in the world they were able to gain
an edge over us. The dice all seem to be fair (insomuch as each face is equally likely
to roll face-up), and the outcome of one die is clearly independent of the other®, so
we should be able to model the game in exactly the same way as before, except now
the outcomes we're comparing to each other are sums of dice rolls, rather than pure

dice rolls.

It seems unlikely to us that rolling two of the same die instead of one should change
anything. However, we tell ourselves, that’s just an assumption. Remember that

transitivity was also an assumption we made, and that turned out to be wronyg...

The only way to know for sure is to look at the numbers.

5.2. Random Variables and Other Formalities. To calculate the probability
of one sum of dice rolls beating another sum of dice rolls—say, comparing two rolls
of die X to two rolls of die Y—we could create an outcome table as we did in section
3.2, listing all possible sums for two rolls of die X and all possible sums for two rolls

of die Y, and seeing which sum is higher than the other more often.

There are six possible outcomes for each individual die, and each player’s die rolls
independently from the other. If D; represents the outcome of a player’s first die,
and D, represents the outcome of a player’s second die, then

1 1 1

P(DiNDy) = P(D)P(Dy) = ¢ % & = .

8This is assuming the dice aren’t quantumly entangled with each other, a feat we're pretty sure
our friend isn’t able to accomplish...
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Each possible sum of a player’s two dice is equally likely with a probability of %.
Because there are six possible outcomes for each individual die, and because the
two die are independent, then there are a total of 6 x 6 = 36 possible sums for each
player’s pair of dice. So, if we were to create the outcome table for comparing two
rolls of die X to two rolls of die Y, the table would have 36 rows for each possible
sum for the first player, and 36 columns for each possible sum of the second player.
This means our table would have 36 x 36 = 1296 cells we’d have to count in order

to get our probabilities!

Perhaps because we have better things to do, or perhaps because we have a lack

9 we decide that there must be a better way of calculating these prob-

of patience
abilities. Our friend was clearly able to find the probabilities in some fashion—or
else they wouldn’t have suggested their variation on the game so confidently—so we

should be able to find them, too!

After staring blankly into space for a bit, perhaps we recall the concept of a random
variable. Instead of directly handling the sums of pairs of dice, could we not reframe
our thinking in terms of some bivariate distribution of two random variables? Each
die we roll is essentially already a random variable since we interpret each outcome
as a number rather than some arbitrary outcome in some abstract outcome space.
Adding the outcomes of two die rolls, then, is essentially equivalent to adding two

random variables together.

If we're to use the language of random variables to analyse this new variant of our
friend’s game, it would probably be beneficial to describe our dice probabilities in
terms of random variables. Let X be a random variable that outputs the numerical
outcome of rolling die X in the set of Double Whammy Dice. Similarly, let ¥ and
Z be random variables that output the numerical outcome of rolling die Y and die
7, respectfully, of the Double Whammy Dice.'® Since there are a finite number of
outcomes for each die, our random variables happen to be discrete random variables.
Thus, to describe the probability distribution of each die, it’s sufficient to simply
list out all the possible outputs of the random variables, along with their respective

probabilities for being output.

90r, perhaps, because the author doesn’t want to type out a table with 1296 cells in KTEX. Maybe
they could’ve made a script of some sort to generate it, but that would be a lot of work for not a
lot of pay-off. Besides, the method used in place of the pure outcome table is much better, anyway.
0T hroughout the rest of this project, we’ll treat a die’s random variable as if it is the die. The
die and its random variable essentially represent the same object, just viewed under a different
lens. After all, what is a die if not but a physical vessel through which to sample some probability
distribution?
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Let fa(D) represent the probability of some random variable A outputting a value
of D. Then, using the fact that each of the three Double Whammy Dice are fair

dice, we see that
(

% if v =3,

Ifx(z) = % if v =6,
\O otherwise.

'; ify =2,

fry)=131% ify=5,
0  otherwise.

and
if z =1,

1
6
fz(2) = % if z =4,

0  otherwise.

\

Our dice are independent, so the probability that X = z and Y = y (i.e., die X
rolls x and die Y rolls y) for some values x and y should be the probability of each
one happening separately, but multiplied together (just like in section 3.1):

P(X=a2AY =y) = fx()fy(y).

Since probabilities of the above form will be quite important to us (since our ultimate
goal is to compare probabilities of pairs of dice rolled together), it makes sense to
give probabilities of this form their own special notation, just as we did for the

probabilities of our Double Whammy Dice. The notation
PX =2 AY =9y) = fxv(z,y) = fx(@)fy(y)

seems fitting, so we’ll go with that.

As an example, the function fixy)(z,y) is described by

(

2 ifr=3Ay=2,
2 ifz=3Ay=05,
faxyy(z,y) =  fr=6Ay=2,
L ifr=6Ay=>5,

0 otherwise.

Formally, what we've defined are the probability mass functions (pmfs) of our ran-
dom variables. The functions that describe probabilities for single random variables

are called marginal probability mass functions, while the functions that describe
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probabilities for multiple random variables are called joint probability mass func-
tions. With these pmfs, the probability notation we were using in earlier sections
now has a more concrete meaning. For instance, when we write P(X > Y), we
mean the probability that the random variable X has a higher value than the ran-
dom variable Y. Instead of computing this using those large outcome tables, we can
now make use of our newly-defined functions:
7
P(X>Y)= Z foaeny(@,y) = fixv)(3,2) + fixy)(6,2) + fixy)(6,5) = IeS

x>y

As the possible outputs of our pmfs represent probabilities of disjoint events, i.e. a
set of events where only one can occur for any given outcome, we can simply add the
probabilities of each event where X > Y to get the probability that X > Y.!* Using
our joint pmf for X and Y, we see that P(X > Y) = L. Note that this answer
agrees with the answer we obtained in section 5.1 by using our outcome tables.

Now, the game our friend forced us to play involved adding the result of two identical
dice. Therefore, rather than only concern ourselves with joint pmfs of the form f 4 p)
for two different dice A and B, it may be helpful to consider joint pmfs of the form

fia,4). Can we construct such a function?

Let’s try and construct fix x). Even though X and X are clearly the same ran-
dom variable, we should keep in mind that, in our friend’s game, we’re still rolling
two different dice. The faces on the dice are the same, and the chances of rolling
each face are the same, though the actual values we get when rolling the dice may
differ between them. This means that our joint pmf for X and X should take in
two values: one for the first die and one for the second. Other than this little
caveat, calculating the values for fix x) is exactly the same process as for the other

joint pmfs. Since our two dice are still independent of one another, we see that

fuxxy (@1, 22) = fx(21) fx(22). Hence,

( .
% if z1 =3 A2y =3,

o ifay =31y =06,

fuoxxy (w1, 12) = % ifxy =6Axy=23,

% ifl‘1:6/\$2:6,

L 0 otherwise.

This expression for fix xy seems about right: 3 is by far the most common face on
die X, so it makes sense that the probability that both die roll a 3 is the highest
HOur ability to add probabilities like this is simply a result of the axioms of a probability space,

mainly the axiom which states that the probability measure must be countably additive for pairwise
disjoint events. See Weisstein [2023] for a complete list of all probability axioms.
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among the possible outcomes. As well, 6 is the most rare face, so it makes sense that
both die rolling a 6 ends up being the least likely of the possible events. Creating
joint pmfs of this kind for Y and Z, we get that

~

T ifyp=2Ay=2,
i ify1 =2ANy, =5,
fory(yiye) =1 ifyr =5Ay =2,
T ity =5Ay =5,
0  otherwise,
and (
% ifz1=1AN2z=1,
v Mz =1Azn=4,
fzz(z,m) =92 ifa=4nzn=1,
% if 21y =4N2 =4,
0  otherwise.

In theory, if we needed probability information regarding sets of three dice, or four,
or five hundred, we could simply construct the joint pmfs for those particular sets
in the exact same manner that we created the joint pmfs above. However, for our

purposes, joint pmfs describing probabilities for sets of two dice are all we need.

5.3. Joint Distributions and Added Dice. Returning to our original task, we
remember that we want to find the probability that the sum of two dice outcomes is
higher than the sum of two other dice outcomes. For example, if we had chosen die X
for our friend’s game, and they chose die Y, we want to find P(X + X > Y +Y).'2
To make calculating this probability easier, it may help to first understand what

values X + X can have, and how likely each one is.

The random variable X can take on two different values: 3 and 6. Therefore, we
could have that X+X =343 =6, X+X =346=6+3=9,or X+X =6+6 = 12.
Each possible pair of dice outcomes is a disjoint event—we can’t roll more than one
possible outcome at a time—and so the probability that X + X equals any of the

sums listed above is just the sum of the probabilities of the outcomes that give that

2While it’s tempting to write X + X as 2X, this would actually be incorrect. Remember that,
although X and X represent the same random variable, their actual outcomes in the game can
differ, so it’s not necessarily the case that the outcome of two X dice added together equals the
outcome of one X die multiplied by 2.
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specific sum. So,

25
P(X + X =6) = fixx)(3,3) = 36
5
P(X + X = 9) = f(X’X>(3,6) + f(X7X>(6,3) = 1—8,
1
P(X + X = 12) = f<X7X>(6,6) = %

As with our other probability expressions, it makes sense to give P(X + X = z) its
own function. Following our previous notation, our probability function could be

written as something like:

.
25
5 ifz=06,

5 ip .
5 ifz=09,

= ifr=12,

fxix(r) =

0 otherwise.

\

Just like X, we see that X + X can take on various values, where each value has
a specific probability of occurring. It makes sense, then, to treat X + X as a new
random variable in its own right, just like the three dice X, Y, and Z. We can
do the same thing for the other two Double Whammy Dice, creating new random
variables Y + Y and Z + Z. Using the same sort of calculations as above, we can
write the pmfs for Y +Y and Z + Z, too:

~

21; if y=4,
1 ify =1,
frav(y) =42
}L if y = 10,
(0 otherwise,
and
(L if-=2,
S if =5,
fz12(2) = °

L if =8,

0 otherwise.

Notice that, despite each possible outcome of Y being equally likely, the possible
outcomes of Y +Y are not equally likely. It seems that the sum of random variables
can have different properties than the individual random variables that make it.
With this revelation, we start to understand why our friend was so eager to propose

this new variant of their game: we were so distracted with the nontransitive nature
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of the dice that we ignored the idea that adding dice could change the underlying
probabilities!

However, with our newly-created pmfs, we should be able to calculate the true
probabilities for this new variant, without any implicit biases getting in the way.
When we calculated P(X > Y'), we added up the probabilities of all the disjoint
events where the random variable X was greater than the random variable Y. So, to
calculate P(X +X > Y +Y), we should do the same thing: add up the probabilities
of all the disjoint events where the random variable X + X is greater than the
random variable Y + Y. Since we have the pmfs for both X + X and Y + Y, this
should be fairly straightforward:'3

P(X+X>Y+Y)

= fx+x(6)fysv(4) + fxix9)[frsv(4) + frov(7)]
+ fxex(12)[fy1v(4) + fyov(7) + frov(10)]

LA D WIS S O WS 6 S U W )
© 36 \ 4 18\4 2 36 \4 2 4) 144

So, the probability that the sum of two X dice rolls higher than the sum of two Y

59
144>

only rolling one of each die, it seems choosing X against Y when rolling two dice

dice is which is less than 50%. Despite X being the superior die choice when

doesn’t give the greatest odds of winning.

Out of curiosity, we wonder about the chances of Y + Y being higher than X +
X...

P(Y +Y > X + X)
= frav (T fxix(6) + frav(10)[fx1x(6) + fx1x(9)]

125\ 1(25 5
_§<%)+Z<%+1—8>
8
-5

The chance of Y +Y beating X 4+ X is 22 which is greater than 50%. When rolling

144>
two dice each, Y becomes the better die, even though X was the better die to choose

when rolling only one die each. In our original “power” relation notation, we’d say
X>Y, but X+X <Y +Y.

BNote that the expression fxix(z)fy+y(y) represents the probability that X + X = z and
Y +Y =y (since the dice are independent). Another valid way to calculate the probability P(X +
X >Y +Y)is to first find an expression for fix i x y+y), then add up all terms f x4 x y4v)(z,y)
where z > y.
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In fact, calculating the probabilities for a few more dice pair-ups, we see that

P(Z+Z>Y +Y)

= f24200) fysv(4) + f2428)[fy+v(4) + friv(7)]

5 (1 N 25 (1 n 1

18 \4 36 \4 2
85
144’

and
PX+X>Z+2)

= fx1x(6)[f242(2) + fz42(5)]
+ [fx+x(9) + fxex(12)][f242(2) + fz42(5) + fz4+2(8)]

_25 (1, 5) (5 1\/1 5 %

T 36 \36 18 18 36/ \36 18 ' 36
671

= T59g < 05177,

So, using our power notation, we have that
XY =7Z~X,

but
X+ X<Y+Y<Z+7<X+X.

Rolling two dice per player instead of one reverses the power ordering for the dice!
Now that we understand how joint pmfs work, it makes sense that the probabilities
for the Double Whammy Dice would change once we add more dice to each roll, but
it’s still surprising that the “ordering” of the dice completely flips. In this way, if
we chose a die against our friend that was more powerful in the single die game, it

ensures that our friend has the more powerful die in the double dice game!

Perhaps this property seems surprising. It may even be more counter-intuitive than
the original nontransitivity of the dice. It’s likely that others found this “reversing
of the chain” property just as counter-intuitive, as the US patent for the casino
dice game mentioned in section 4 makes use of this very property to further mislead
potential gamblers. As Page explains it on column 7, line 67 of Page [1992],

If one were to try and predict the favored outcome ... based on the
performance record of each individual die involved in [a] contest, it
would be noted that the true odds favor SW to beat SR a majority
of the time and that BG is favored to beat BW a majority of the

time [...] Based on this, logic would seem to indicate that a pairing
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of SW-BG (the two favorites in individual die comparisons) would be
favored to beat a pairing of SR-BW (the two underdogs in individual
die comparisons). However, in actuality, the pairing of SR-BW is

favored to beat the pairing of SW-BG a majority of the time

In the patent, SW, SR, BG, and BW are the names given to different dice used
in the game. This quotation only further exemplifies the importance of carefully
analysing probabilistic games... such as the ones forced upon us by our friend.
Otherwise, we may fall victim to the (apparently numerous) foibles of our intu-

ition.

6. THEORETICAL CONSIDERATIONS

6.1. Maximum Guaranteed Winning Probabilities. It’s inevitable that our
friend will try and trick us again. They’ve already duped us twice... what’s stopping
them from duping us a third time? To prepare for this inevitability, we figure that
it’s best to try and learn as much as we can regarding these nontransitive dice games.
Knowledge is the only tool we have to defend ourselves against the cunning intellect

of our friend.™

Maybe as a first curiosity, we wonder to what extent our friend could rig a game
in their favour. As we’ve seen previously, for each die (or set of dice) that’s “more
powerful” than another die (or set of dice), it’s not necessarily the case that the
probability of rolling higher is the same for each of them. For the Double Whammy

Dice, we calculated that

21
P(X>Y)=—
(X>¥)=2
21
PY>Z7)= 36 and
25
P(Z>X)=—.
( ) =35

Evidently, these probabilities aren’t all the same. A natural question might be to
ask what the “highest minimum guaranteed probability of winning” is for our friend.
That is, assuming our friend chooses their die/dice optimally during play, what’s the
highest possible probability p their game can attain so that, no matter what die/dice

we choose, their probability of rolling higher than us is always at least p?

This exact question has been tackled in multiple papers. An upper bound of this

probability was derived in Usiskin [1964]. Their proof goes as follows:

14At this rate, they may soon become our ex-friend!
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Theorem 6.1. Say we’re given n random variables (X1, Xo,--- , X,) representing
the outcomes of die rolls. Then

n—1

maxmin({P(X; > X,), P(Xp > X3), -+, P(Xom1 > X)), P(X, > X1)}) =
i n

Proof. Consider the sum

Z P(X; < X(i mod n)+1)

=1

=P(X; < Xp)+P(Xo < X5)+ - +P(X,1 £ X,) +P(X, £ Xy).

By properties of probability spaces, we can say that

ZP(Xi < X(imodn)+1) = P (U Xi < X modn)+1> :
=1 =1

It turns out that
n
P (U X; < X modn)+1) =1
i=1

since at least one of the events X; < X(; nod n)+1 in the union must always happen,
no matter the choice of random variables X;. To see why, imagine we take a sample
(x1, 29, ,x,) from our joint distribution (X, Xs, -+, X,,). If the first n—1 events
in the union haven’t occurred, this implies that x1 > 29 > 23 > -+ > x,_1 > ©,.
Then it must be the case that z, < x; by the transitivity of inequalities, which
means the n-th event in the union occurred. Therefore, at least one of the events in
the union must occur, and thus the probability is 1 since the union of a set of events

where one is guaranteed to occur is a certain event.

This means that

ZP(Xz S X(z mod n)+1> Z 17

i=1
which implies that at least one P(X; < X(imoan)+1) has a value of at least %
Otherwise, there’s no way the sum could be greater than or equal to 1 (since a sum

of n values, all of which are less than %, must necessarily be less than 1).

By properties of probability spaces, there’s at least one P(X; > X(; mod n)+1) Where

1 n-1
P<XZ > X(Z mOd")+1) =1- P(Xz < X(z modn)+1) <1- E = )

since P(X; < X(imod n)+1) and P(X; > X(i mod n)+1) are complementary events.
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So, for the set of probabilities {P(X; > X5),P(Xs > X3),---,P(X,, > X1)}, at
least one is bounded above by "T’l, which means that

n—1

H};dxmin({P(Xl > Xy),P(Xy > X3),--- ,P(X,-1 > X,,),P(X,, > X/)}) <
i n

Now, consider the following joint distribution, with each outcome having a proba-
bility of %:

Y1,Yo,--- Yy e{(n,n—1,n—-2--- 3,2, 1)}
U{n—1,n—-2n-3,---,2,1,n)}
Uu{n—2,n—-3,n—4,---,1,n,n—1)}

U .-
u{{2,1,n,---,5,4,3)}
u{{l,n,n—1,---,4,3,2)}.
This joint distribution is constructed so that each P(Y; > Y{; mod n)41) = ”T_l There-

fore, the upper bound for our maximum is attainable. Therefore,

n—1

m)?XHHIl({P(Xl > XQ),P(XQ > Xg), s 7P(Xn—1 > Xn),P(Xn > Xl)}) =
i n

QED

What theorem 6.1 tells us is that, given any set of n nontransitive dice, the highest
possible winning probability our friend can guarantee for themselves, no matter

what die we choose, is bounded by ”T_l

However, theorem 6.1 makes no assumptions about the underlying probability dis-
tributions of the given random variables; the theorem applies to all possible joint
probability distributions, not just those representing the rolls of fair dice. In fact,
the true, “achievable” upper bound on our friend’s maximum guaranteed winning
probability is quite different from the general result listed here. An exact formula
exists for this “achievable” upper bound, given in Vuksanovic and Hildebrand [2021]

as
1

B 40052(7%2)’

pn:]-

where n is the number of dice in the game.

As an example, the value p, can be calculated as

L 1
dcos?(5) 4(\/75)2 3

ps=1
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If we refer back to the probabilities for the Efron dice listed in section 3.2, we notice
that

P(A>B):P(B>C):P(C>D):P(D>A):§,

meaning the Efron dice give our friend the highest possible guaranteed winning

probability against us! If, instead, we calculate p3, we get that

1 1 4 1
=l =1 = V5 ~ 0.6180.

~ deos?(575) sBe T 45 2

Looking at the probabilities we calculated for the Double Whammy Dice, we see
that

21 _
P(X >Y)= 5. =0583,

21 _

P(Y >Z7Z)=— =0.583
( ) 36 ?
25 _
P(Z>X)=—=0.694
(2> X) = = = 0,691,

V5-1
2

ble Whammy Dice don’t give our friend the theoretical highest possible guaranteed

so the guaranteed winning probability for these dice is % < , meaning the Dou-

winning probability.

Unfortunately, there isn’t much more we can do with these guaranteed winning
probabilities without getting a fair bit more abstract. The papers Richard P. Savage
[1994], Usiskin [1964], Trybula [1965], and Funkenbusch and Saari [1983] go much
more in-depth regarding the theoretical limitations of what sorts of probabilities
are and aren’t possible with joint distributions of random variables (such as our
collections of dice). The purpose of this project is only to give an overview of the
landscape of nontransitive games, and focusing too much on the nitty-gritty'® takes

away from the reader’s general understanding of the subject.!®

6.2. The Extent of Nontransitivity. Another question we may ask ourselves is
whether there’s any sort of limit to the “types of behaviour” that nontransitive dice

can exhibit. For example, with the Double Whammy Dice, we had that
X=Y -7Z>X,

but
X+ X=<Y+Y=<74+7<X+X.

1510 the author’s humble opinion...

16D ye to the relative simplicity of theorem 6.1, it was included for completeness’ sake. The theorem
gives the reader a taste of the sorts of considerations that go into proving properties of nontransitive
games without demanding an unnecessary amount of thought. As well, should the reader have no
interest in the proof, it can easily be skipped without sacrificing any understanding of the concepts
discussed herein.
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Rolling two dice switched our “power” ordering. However, is it possible to have
our power ordering swap in any possible way? For example, could it be possible to
construct a set of three dice S, T, and U such that

S~=U T>=U

but
S+S<U+U T+T=<U+U?

Note that such a relation between S, T', and U isn’t necessarily nontransitive in the
way we've been talking about, but it illustrates the idea: what restrictions, if any,

exist on the types of power relations we can have between dice?

This exact question is answered by the theorem on page 48 of Saari [1995]. When
dealing specifically with one or more triplets of dice (such as the Double Whammy
Dice), it’s possible to choose a set of dice so that, by adding these various dice
together, any sort of power relation ordering is possible, while also preserving the

nontransitivity between triplets (or groups of dice added together)!

This seems a very unlikely result. The fact that any power ordering is possible by
adding some dice together in some way seems “too loose”, somehow. If any sort of
power ordering is possible with our dice games, is any power ordering possible with
other ranked objects? Could we apply this same logic to elections, perhaps? We’ll

address these concerns a little later in the project.!”

6.3. Various Nontransitive Dice. One final question plagues our mind.'® Up to
now, we’ve only been considering cubic nontransitive dice. Nothing in our investiga-
tions have suggested that only cubic nontransitive dice exist. Could we potentially

design nontransitive dice for other polyhedra?

Say we wanted to find a set of three nontransitive tetrahedral dice. Tetrahedral dice
have fewer possible outcomes compared to cubic dice—four as opposed to six—so
maybe finding a nontransitive set isn’t so bad? Thankfully, this assumption turns
out to be true. By fiddling with the Double Whammy Dice, it turns out that their
face values can be adapted into nontransitive tetrahedral dice (see figure 6). Fur-
thermore, if we were to take each tetrahedral die and copy-paste their face values
onto both halves of an octahedral die, we’d have another valid set of nontransitive
dice, since the probability of landing on each face would be identical for the corre-
sponding tetrahedrons and octahedrons. This same technique can be used to create
a set of icosahedral dice as well. However, it’s also possible to create unique sets of

1811 actuality, there are many, many more questions that could still be plaguing our mind. To
keep the narrative on-track, our hypothetical questions have been limited to a select few.
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AV

FIGURE 6. The nets for a set of nontransitive tetrahedral dice. These
are known as “Tiggemann’s Dice”.

nontransitive dice for both the octahedral (figure 7) and icosahedral (figure 8) dice,

sets that don’t rely on using the same faces as the tetrahedral dice.

While we're at it, we might as well look for a set of dodecahedral nontransitive dice.
Several sets are known, though arguably the most interesting are known as “Miwin’s

Intransitive Prime Dodecahedron”. These nontransitive dice each beat each other

35
697

wasn’t enough, for each die, if you add up all the die’s face values, you get a sum

with a probability of 22, and all the face values happen to be prime numbers. If that

of 468. None of these extra properties contribute anything to the nontransitivity of
the dice, but it’s interesting that such a set of dice can exist. A more thorough look

at these non-cubic nontransitive dice can be found in Pasciuto [2016].

One final set of dice worth mentioning are the New Grime Dice. Up to now, all

the sets of dice we've discussed are meant to be used in two-player games, such as

AR
VAVFAWA

FIGURE 7. The nets for a set of nontransitive octahedral dice. These
are known as the “Nichlman Dice”.
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FIGURE 8. The nets for a set of nontransitive icosahedral dice. These
are known as the “Pascannell Dice”.

the dice game between us and our friend. However, Dr. James Grime wondered if
it would be possible to construct a set of dice that could be used in a three-player
game. In other words, Grime wondered if it was possible for our friend to challenge
two people at once—letting each person pick their die before they did—and still be
able to choose a single die that would have a higher probability of rolling higher
than both the other two chosen dice.

After some trial and error, Grime came across the New Grime Dice, a set of five
cubic dice with fwo distinct nontransitive cycles among the dice, meaning there are

two ways to rank the dice using our power relation that exhibit nontransitivity.

FIGURE 9. The nets for a set of nontransitive dodecahedral dice.
These are known as “Miwin’s Intransitive Prime Dodecahedron”. A
more detailed breakdown of these dice can be found at Winkel-
mann [2015]. Credit to Benjohn, Oolong, and Intelligenti pauca
from https://math.stackexchange.com/questions/1634991 for provid-
ing the dodecahedron net used.



AN INTRODUCTION TO NONTRANSITIVE GAMES 31

15

2]|2]2]

15

15
e /N f
8| 88| & R
4 q
1 9
N /

10

F1GURE 10. The nets for the New Grime Dice. An arrow from die A
to B indicates that die A is more likely to roll higher than die B.

Crucially, however, if we decide to play the two-die-per-player variant of the dice
game (where both of each player’s dice are summed together to get their outcome),
one of the nontransitive cycles swaps its ordering, while the other one retains its
ordering. Using this order-swapping property, no matter which two dice our friend’s
opponents choose, our friend can always choose a die that has a greater probability
of rolling higher than both... provided our friend is allowed to decide on-the-fly

whether each player rolls one or two dice! '

According to page 5 of Grime [2017], only nontransitive dice games for two or three
players are known to exist. For a four player game to exist—where our friend
challenges three players simultaneously—it seems that at least nineteen dice are
required for such a game (if only one of each die is rolled per person). Other than
that, we don’t know much more about what a set of nontransitive dice for four or

more players would look like.

Grime goes into more detail surrounding the New Grime Dice (and other attempts

at creating nontransitive sets of dice) in Grime [2017]. As well, he also casually

1976 elaborate: sometimes, in the single-die game, the chosen dice of the two opponents leave our
friend without a die that beats them both. However, switching to the double-dice game changes
some of the probabilities in the exact way needed to allow our friend a choice that beats both
opponents. So, provided our friend can decide before each game whether they’re to roll one or two
dice, they can always choose a die that has a greater probability of rolling higher than both their
opponents simultaneously.
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FIGURE 11. The nets for the New Grime Dice. Here, two dice are
rolled per die choice, and the outcome is the sum of the two dice. An
arrow from die A to B indicates that A+ A is more likely to roll higher
than B + B.

mentions a particularly interesting result concerning the types of setups our friend

could create for new dice games.

From page 4 of Grime [2017], it’s said that “one can always set up a nontransitive
system of m n-sided dice”. For our purposes, this means that our friend can always
find at least one set of m dice, each with n possible outcomes, where a nontransitive
power relation occurs between the dice (where there’s no single best die to choose
to get the highest possible chance of winning). So, no matter the shape of the dice
or the number of dice used, our friend can find a dice game where they always have

a higher chance of winning!

For even more examples of nontransitive dice, pages 287 and 294 of Gardner [2001]
contain some interesting sets, as well as some variations on the dice game itself (e.g.
using cards to determine outcomes instead of dice). Table 2 of Page [1992] also

contains more sets of nontransitive dice.

7. PENNEY’S GAME

7.1. Devising New Nontransitive Games. Our explorations into nontransitive
games have certainly broadened our understanding and appreciation of nontran-
sitive relations. Maybe they’ve also caused us to become more wary of relations

which appear to be transitive but give no specific reason to believe that they’re
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transitive (see section 8 for some examples). Most of all, though, our exploration
has caused us to become envious of our friend. Twice they were able to fool us with

nontransitivity!

The only way to reclaim our mathematical prowess is to beat our friend at their own
game. However, we can’t make use of either of the dice games, both because they’re
rigged against us and because our friend has a complete understanding of them.
To beat our friend, we’ll have to create our own nontransitive game, one where the

nontransitivity is even less obvious! That way, our friend is sure to be fooled.

In order to create a nontransitive game, we first need to identify what made our
friend’s game so counter-intuitive. What was it about the dice game that escaped
our reasoning? How was our friend able to construct such a biased game without
us realising? In both cases, it seems the answer is our assumption of transitivity.
However, this raises another question: why did we assume transitivity in the first

place?

Transitivity is a fairly common assumption to make in plenty of scenarios. It’s im-
plicitly assumed across several different disciplines. As Klimenko comments on page
4370 of Klimenko [2015], many people “have psychological difficulties in accepting
a relativistic approach [to ranking], expecting an absolute scale of judgments from
‘bad’ to ‘good’, which can be suitable in some cases but excessively simplistic in
the others.” Klimenko attributes this inclination to the human mind “filling in the
gaps” whenever we're tasked with comparing a subset of objects when the full set is
partially or completely unknown. We make assumptions about the underlying re-
lationships between objects which are perfectly transitive with regard to the subset

we're presented, but lose their transitivity when applied to the entire set.

For example, with our friend’s original dice game, the subsets in question are the
pairwise “battles” between the dice. In pairs, we can easily rank one die as more
powerful than the other based on which one rolls higher in the majority of roll
outcomes. However, when we try to apply these ranking to the entire set of Efron

dice, the rankings suddenly become nontransitive.

What this implies is that, to make our nontransitive game, as long as we can get our
friend to focus on some subset of our game’s nontransitive “objects”—whatever they
happen to be—we can exploit their brain’s natural tendency to create seemingly-
transitive relations between them in order to hide the objects’ inherent nontransi-

tivity!
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Now, with us being the incredibly evil masterminds that we are, we begin idly
flipping a coin as we look for inspiration. What sorts of objects could we use, other
than dice, that exhibit some sort of nontransitivity when attempting to rank them?
Our eyes flick around our room, occasionally stopping on our coin, then moving

somewhere else, then moving back to the coin.

However, something odd catches our attention: the patterns our coin is making.
Assuming the coin we're flipping is fair (in the same way we discussed for dice),
every possible pattern of heads (H) and tails (7) we could flip should be equally
likely. Despite this, whenever our gaze flicks back down to our coin, we seem to
notice the pattern HT being flipped before T'T" more times than not. Similarly, the
pattern T'H seems to be flipped before HH more times than not.

Focusing our attention on the coin, we begin a fresh sequence of flips, recording the
sequence and analysing it for patterns. Let’s say our recorded sequence of flips ends

up looking like
HTTT HTT HHTHHTHTTHHTHHTHH, H.

If we start from the first flip, we notice that HT occurs before T'T', and T'H occurs
before HH. From the second flip, T'T" occurs before HT', but T'H still occurs before
HH. If we were to start from all twenty-five of these flips, counting how many
times HT occurs before TT', we'd get a count of 17. Similarly, if we start from all
twenty-five flips, counting how many times T'H occurs before H H, we’d get a count
of 18. These seem exceptionally high counts, especially for flips generated from a

seemingly-fair coin...

We need some notation to effectively talk about these patterns. If A and B are
chosen coin flip patterns (such as HT or T'T), then let A > B represent the event
that pattern A is flipped before pattern B in the way described above. Can we find
a way to calculate P(A > B)?

As a specific example, let’s try and compute P(HT >TT). Assuming our coin is fair,
then there’s a 50% chance the first flip in our sequence is H and a 50% chance the
first flip is T'. Graphically, our outcomes can be expressed as an outcome tree, where

each leaf node at the bottom of the tree represents a possible flip sequence:

PN

H T

As well, the second flip has a 50% chance to be H and a 50% chance to be T'. The

outcome of the first flip has no bearing on the outcome of the second (i.e. coin flips
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are independent), so regardless of whether the first flip was H or T', the second flip
is chosen between H or T" with equal probability. With our tree, this is represented

as:

H T

N N
HH HT TH TT

From this tree, we can see that one equally-likely flip sequence is TT', and one is
HT. The remaining two possible sequences all end in H. Therefore, if we were to
continue adding flips to these sequences, in order for T'T to be flipped somewhere
in these sequences, a T must be added to the sequence. However, when a T is
added to the sequence, the pattern HT will necessarily occur first, since a H will
necessarily be the end of the sequence before a T is flipped. Thus, for the remaining

two possible sequences, HT' will occur before TT":

Therefore, since the four outcomes on the second layer of the tree are equally likely,
we see that the pattern HT has a 75% chance of being flipped before TT. In our
notation, we’ll write this as

P(HT > TT) = Z

Using the exact same sort of argument, we get that

P(TH > HH) = .

Despite our coin being fair, there exist certain sequences of coin flips that occur
before other ones more often. There’s nothing special about sequences of two flips,

either. Building an outcome tree for the patterns TTH and HT H, we get:
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Note that this outcome tree was separated into two: one for when the first flip is H,
and one for when the first flip is 7. Using these two trees, we see that
5
P(I'TH > HTH) = g

Indeed, for any two given sequences of coin flips, we can build an outcome tree as

we did above and determine which sequence is more likely to occur first.
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Equipped now with some notation and a way to calculate which patterns are more

likely to occur first, we crunch some numbers out of curiosity. We see that

P(HTT » TTH) =

P(HHT > HTT) =

P(THH > HHT) =

o
=
(o

P(TTH »>THH) = -.

QIDN =] W WM =W

If we use the notation A > B to mean that pattern A is more likely to occur before
B, then the above probabilities tell us that

HTT~TTH-THH = HHT -~ HTT.

This situation looks familiar. No matter which of these four patterns we choose,
there’s always another pattern that’s more likely to occur first in a sequence of coin

flips. Crunching some more numbers, we see that

P(THH > HHH) = g
P(TTH > HTH) g
P(HHT > THT) = g and

P(HTT > TTT) g

and so
THH -~ HHH, TTH -~ HTH, HHT = THT, and HTT » TTT.

For each of the four patterns not included in the nontransitive cycle we found, there
still exist patterns that are more likely to occur first. So, no matter which three-flip
pattern we choose, there always exists another three-flip pattern that has a higher

chance of being flipped first.

It seems we've found another nontransitive game. Imagine we approach our friend
with a coin, asking them to choose some three-flip sequence of heads or tails. After
they make their selection, we choose our own sequence. Then, we flip the coin
repeatedly, recording the generated sequence of heads and tails. The person whose
sequence is flipped first is the winner. Based on the calculations we performed above,
we can be sure that, no matter which sequence our friend chooses, there will always

exist a sequence for us which gives us a better chance of winning!
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THH HHT

TTH HTT

FIGURE 12. A graph showing which three-flip patterns appear first
more often than others. An arrow from pattern A to B indicates that
pattern A is more likely to occur first when compared to pattern B.

As well, since the idea of a coin flip being fair is so ingrained into our minds, it’s
likely that our friend will have a hard time recognising the nontransitive nature of
these flip sequences. After all, since a coin flip is fair, it seems obvious that each
sequence should be as likely to be flipped first as any other. What’s more, unlike our
friend’s dice game, the coin we're using is a regular, unadulterated coin, whereas our
friend’s dice had face values which were altered from the usual one to six in exactly
the way needed for nontransitivity to occur. In a sense, the nontransitivity of our

new game is even more obscured than it was in the dice game!

The game we’ve just discovered is known as Penney’s Game, named after the math-
ematician Walter Penney who first described it in 1969. On page 303 of Gardner
[2001], Martin Gardner describes the game as “one of the finest of all sucker bets”,
and it’s clear to see why. Without a careful analysis of the game, it seems obvious
that each possible sequence has equal odds of being flipped first. However, as we’re
well aware, things seeming to be true isn’t the same as them being actually true!
Unlike the dice game, where the fault in our logic comes from assuming that the
hierarchy of dice rankings is transitive, the fault in Penney’s Game comes from the

false assumption that there isn’t a hierarchy of rankings at all!

Pages 303-311 of Gardner [2001] delve more in-depth on Penney’s Game, considering

other ways to analyse flip patterns—such as by using waiting times—as well as
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considering possible ways to determine which flip patterns give us the highest chance
of winning against our friend. In the next subsection, we’ll consider one such way

to find the best patterns: Conway’s Algorithm.

7.2. Conway’s Algorithm. With our new nontransitive game designed, we now
wonder if there’s a more efficient way for calculating which sequences of coin flips are
more likely to occur first. Certainly, using the brute-force-outcome-tree approach,
we can list all possible match-ups of coin flip sequences in a table and calculate
which one is the better choice by making trees for all possibilities. For our game,

such a table would look something like the following?’:

HHH HHT HTH HTT THH THT TTH TTT
HHH| .. 3 5 5 5§ 15 5 3
HAT | 3 .. § § 4 § 5 1
HTH| 5 5 5 5 5 &5 i
HTT | § 5 5 - 3 3 i 3§
THH| § % 5 5 = 5 5 3
THT | 5§ 5 5 5 = 5 %
TTH| % 5§ 4 5 3 >
T 5 % v s 5 3

Here, each cell of the table represents the probability that the sequence in the left
column occurs before the sequence in the top row.?! From this table, we can easily
read off which sequence to choose, given the chosen sequence of our friend. For
instance, if our friend chooses TT'H as their sequence, we should choose HT'T, as
HTT has a % chance of appearing before TT H.

This table works perfectly fine for our particular game, but what if we needed to
modify our game in the future? After a while, our friend will definitely figure out
that something’s amiss with the game. We’ll need to introduce some variations on
the game to keep them guessing, which means we likely won’t be able to keep using

the same outcome table.

Thankfully, John Conway has us covered. He devised an algorithm, which we’ll
call “Conway’s Algorithm” for the remainder of this project, that calculates the

probability that one sequence of coin flips occurs before another. This algorithm

20The table for comparing two coin flip patterns to see which is more likely to occur first was
adapted from Gardner [2001].

2IThe ... symbol is used where a particular coin flip sequence is being compared to itself (and so a
particular probability value here wouldn’t be well-defined). The symbol was adopted from Canada
[2019].
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works for sequences of any length, which makes it a good algorithm to use should

we ever consider variants of our original game.

However, there’s a slight caveat to Conway’s Algorithm. The algorithm itself works
perfectly well: give it two coin flip sequences and it’ll churn out the relevant prob-
abilities needed for Penney’s Game. The caveat is in understanding the algorithm.
The pmf calculations we performed in section 5.3 may have been a little long-winded,
but the intuition behind why they worked was quite simple. Joint pmfs are simply
functions that give probability information regarding joint probability distributions.
Because rolling multiple dice counts as a joint distribution, we could use pmfs to

calculate the probabilities we were interested in.

Conway’s Algorithm, on the other hand, uses a rather esoteric method for calculating
its probabilities. It involves writing sequences on top of each other and sliding them
around, tallying up matching symbols and recording the data in binary numbers.
Then, these binary numbers are converted to decimal and placed in a seemingly ar-
bitrary ratio which supposedly represents the odds of one sequence occurring before
the other. Even Martin Gardner was puzzled by Conway’s Algorithm. On page 306
of Gardner [2001], he admits that he “ha[s|] no idea why it works. It just cranks out

the answer as if by magic, like so many of Conway’s other algorithms”.

While understanding the algorithm isn’t strictly necessary to use it, the mathemati-
cian in us craves answers. Section 7.3 details a more intuitive way of understanding
the process, adapted from Miller [2019]. For now, we’ll focus solely on how to use

the algorithm.

Let’s say Alice and Bob from figure 1 decided to play Penney’s Game, with Alice
choosing the sequence A = HT'T and Bob choosing the sequence B = T'HT'. Con-
way’s Algorithm has us calculate four different numbers—called “leading numbers”—

in order to construct a ratio for deciding which sequence is more likely to occur first.
We'll call these four numbers R4(A), Ra(B), Rp(A), and Rp(B).??

Now, we’ll walk through calculating one of these four numbers, say Ra(B). The
other three numbers are computed similarly, just using different sequences. First,
we write the sequences aligned, with sequence A being written above, while sequence

B is written below:

A: H T T
B:'T" HT

22The notation used here is slightly different from what’s typically used when discussing Conway’s
Algorithm, but it aligns nicely with how the intuition for Conway’s Algorithm is presented in
section 7.3. In the author’s opinion, it’s also less confusing.
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With this alignment, we check whether all the pairs of flips match each other. In this
case, the first flip of A doesn’t match with the first flip of B, so the flips don’t match

each other. Since they don’t match, we write a 0 on top of the first column:

RA(B) . 0
A: H T T
B: T H T

Next, we shift the bottom row one flip to the right and check again whether all the

pairs of flips match:

RA(B) . 0
A: H T T
B: T H T

In the third column, the T flip in A doesn’t match the H flip in B, so again, the

flips don’t match each other. We write a 0 atop the second column:

RA(B) . 0 0

A: H T T
B: T H T

Then, we shift the bottom row one final time, and check again whether the pairs of
flips match each other. In this case, there’s only one pair of flips to consider, and

they’re both T flips, so they match. We write a 1 atop the third column to signify
this match:

Ra(B): o o 1
A: H T T
B T H T

The value of R(B) is then given by converting the binary number we got—001—
into decimal. In this case, we get that R4(B) = 1. If we were to compute the other
three numbers using the same method, we’d get that R4(A) = 4, Rp(A) = 2, and
Rp(B) =5.

Using these four numbers, we can now construct a ratio that represents the odds of
sequence B occurring before sequence A. If B> A represents the event that sequence

B occurs before sequence A, then
Odds of B> A =Ry(A) —Ra(B) : Rg(B) — Rp(A)
=4-1:5-2
=3:3.
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Thus, the odds of sequence B occurring before A are 3 : 3, meaning it’s equally

likely for either A or B to occur first.

If, instead, Alice chose the sequence A = TTT and Bob chose the sequence B =
HTT, then R4(A) =7, Ra(B) =0, Rp(A) =3, and Rg(B) = 4, and so

Odds of B> A =Ra(A) —Ra(B) : Rg(B) — Rp(A)
=7-0:4-3
=7:1
In this case, Bob’s sequence has far greater odds of occurring first. For every seven

times Bob’s sequence occurs first, Alice’s sequence will only occur first once. It’s

clear to see that Bob has a severe advantage in this scenario.

Conway’s Algorithm works perfectly well with sequences of greater than three flips,
it’s just that more shifts will have to be done in order to construct each of the four
leading numbers. As an example, given the two sequences A = HHTTTT and
B =TTTHHH, Conway’s Algorithm gives R4(B) = 7.

If we wanted the probability that sequence B occurs before sequence A, the leading

numbers of Conway’s Algorithm can also give us that:

_ Ra(A) — Ra(B)
PIB>4) = R AT = Ra(B) + Ru(B) — Rp(A)

If we wanted, we could verify that this formula gives the exact probabilities that

were listed in the above probability table. The point, however, is that Conway’s
Algorithm eliminates the need for such a table. It also eliminates the need for
devising a different way of calculating these probabilities should we choose to change

the length of each player’s sequence.

7.3. Intuition Behind Conway’s Algorithm. While Conway’s Algorithm pro-
vides a handy way for checking which coin flip patterns we should choose against
our friend, it doesn’t exactly say why we should choose one pattern over another.
What exactly is Conway’s Algorithm computing? How does it know which pattern
is better than the other?

The answer to this question isn’t exactly obvious. There are many different proofs
of Conway’s Algorithm,?® though all we're concerned with is understanding why the
processes used in Conway’s Algorithm should be related to Penney’s game. What we
need is a slightly different perspective on Penney’s Game, one that elucidates how

the calculations of Conway’s Algorithm are relevant to sequences of coin flips.

Z3For example, pages 401 to 410 of Graham et al. [2011] describe a way to prove Conway’s Algorithm
using generating functions.
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Recall Alice, Bob, and Chris from figure 1. Imagine they’ve all gone to a casino,

and have decided to make some bets on a particular coin-flipping game.?*

F1GURE 13. In case you needed a visual of Alice, Bob, and Chris at
the casino. Credit to Jeremy Chevere for the illustration.

The premise of the game is simple: the betters each bet on a particular side of a
coin, either heads (H) or tails (7'). The casino then flips a fair coin. If a better’s
side of the coin appears, their bet is doubled and given back to them. Otherwise,
the casino pockets the bet. There’s no limit to how many plays each player can
play; they can bet on coin flips as much as they want, and, if they’re lucky, can win

as much as they want.

Now, Chris happens to have a lot of money, and has decided to fund Alice’s and
Bob’s betting. On each coin flip, Chris bets $1 for both Alice’s and Bob’s guesses.
If one of them wins their bet—therefore earning them double their bet—Chris gives

the entire winnings to that player.

After a few rounds, Alice and Bob realise that, in its current state, the game is per-
fectly balanced between them; the casino’s coin is a fair coin, and so both players

should expect to win about 50% of the time. Since Alice and Bob are constantly

24This game (along with its analysis) was adapted from Miller [2019].
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determined to prove their superiority to each other, they decide to add some addi-
tional structure to their betting in the hopes of adding some strategy, and therefore

adding a chance for one player to win more bets than the other.

Each player is to pick a different sequence of three coin flips, say HT'H or TTT.
Chris will continue betting for them, but the way in which he’ll be betting will
change depending on each player’s chosen coin pattern (explained below). Once one
of the two players’ chosen sequences appears as a sequence of the casino’s coin flips,
the winnings of both players’ bets are distributed to them by Chris. Alice and Bob
will play a few rounds like this simultaneously (and at the same table, so as to bet
on the same coin being flipped), and whoever earns the most money at the end will

be deemed the superior gambler.

The way in which Chris bets for the two players is a little convoluted under this

new set-up. Therefore, an example is in order.

Imagine Alice’s chosen coin flip sequence is HT' H. On each casino flip, Chris bets $1
on the coin being H, the first flip in Alice’s sequence. If the casino’s flip is T, then
the casino pockets the $1 and nothing happens. However, if the casino’s flip is H,
then Chris wins $2 from the casino. Instead of immediately giving these winnings
back to Alice, however, Chris now bets the $2 on the next flip being 7', the second
flip in Alice’s sequence. As well, Chris also starts another, separate $1 bet on the
next flip being H. If the flip is H, then Chris’ $2 bet is lost, while the $1 bet wins
him $2. If the flip is T, then the $1 bet is lost while the $2 bet wins him $4.

For each of the casino’s coin flips, Chris always bets $1 on the flip being H, the
first flip in Alice’s sequence. If any of these bets win, then the entire winnings from
that particular bet are then put on a separate bet, with the predicted flip being the
second flip in Alice’s sequence. If that bet also happens to win, then the winnings
of that bet are again put on another bet, with the predicted flip being the third in
Alice’s sequence. Finally, if this third bet wins, then Chris gives the winnings of
the bet to Alice, along with any winnings from “in progress” bet sequences (ones
that were bet on the first or second flip in Alice’s sequence). The first of the two
diagrams on the following pages illustrates how much Alice would win if the casino

flips her sequence.

Note that Alice’s sequence must exactly occur in the casino’s sequence of flips for

Alice to receive her winnings from Chris.

While Chris is betting on Alice’s sequence, Chris is also betting on Bob’s sequence

in the exact same fashion. Whenever either of their sequences are flipped by the
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casino, Chris distributes both the winning bet sequence to the winning player and
the “in progress” winnings to both players. The second diagram on the following
pages illustrates how much Bob would win if Alice’s sequence is flipped when his

chosen sequence of flips was HT'T'.

The challenge for both players is to choose a sequence of coin flips that’s “better”
than the other player’s sequence—that is, a sequence that’s more likely to occur
before the other player’s so as to earn more winnings.?> With this extra structure
established, the link between Alice’s and Bob’s game and Penney’s Game becomes

clear.

Even here, in this highly-constructed set-up, one may be tempted to say that Alice’s
and Bob’s odds of winning should still be equal, as they were for the single coin flips.
After all, the casino’s coin is a fair coin. Does this not imply that the sequences

that each player can choose are equally likely to occur?

In fact, each possible sequence of coin flips actually is equally likely to occur, but
they’re not equally likely to occur first.

Consider the situation in which Alice chooses HH H as her sequence of coin flips.
For each flip of the casino’s coin, there’s a % chance that the next three coin flips
(with the current flip counting as the first) will match Alice’s sequence, no matter
what Alice’s sequence is.26 We'll say that there’s a % chance of the casino’s flip
starting Alice’s sequence. Roughly speaking, this means that, for every eight coins

the casino flips, we’d expect one of them to start Alice’s sequence.

So, if Chris bets on Alice’s sequence in the same way described above, then Chris
would expect to spend about $10 before Alice’s sequence shows up in the sequence
of casino flips—$8 for the eight flips to get Alice’s sequence started, and $2 to finish
flipping her sequence. However, using Chris’ betting strategy, Alice would win $14
using HH H as her chosen pattern. So, for every expected $10 to be spent, $14 are

expected to be gained, which is a net gain for Alice...

How is this possible? If the coin is fair, how can Alice have possibly derived a
strategy to rig the odds in her favour? It turns out, actually, that Alice’s strategy

doesn’t rig the odds in her favour.

25Tn this scenario, the player whose sequence occurs before the other’s will always earn more
winnings since a complete betting sequence from Chris will earn them at least $8, and the maximum
a player can earn without a complete betting sequence is $6.

26The % comes from the fact that there are 8 possible sequences of three coin flips, and each one
is equally likely since the coin is fair.
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Recall that, when Alice’s sequence occurs in the casino’s flips, Chris returns all

¢

winnings to Alice—even those from “in progress” betting sequences—and begins
betting afresh. This has the effect of starting a new sequence of casino coin flips,
where previous flips are no longer of any significance. If we refer to the probability
table constructed in section 7.2, we see that HH H is less likely to occur first when
compared to almost every other sequence. Therefore, every time a new sequence of
casino flips starts, the chance of the casino’s flips starting Alice’s sequence is less
than %, meaning we can’t expect to make $14 for every $10 spent like we predicted
above. In fact, the chance of Alice’s sequence being started has decreased by the

exact amount required to make Alice’s expected profit $0.

Returning to the two player case with both Alice and Bob playing at the same table,
let’s consider the expected winnings of both players. Consider the case where Alice
bets on the pattern HTT and Bob bets on the pattern THT'. Since Alice and Bob
are solely concerned with earning more money than the other, let’s look at how
much more money each player wins, comparatively, when their pattern occurs first
in the casino’s flips. We'll refer to this amount as the lucre for each player, just
to ease in description. If Alice’s pattern occurs first, then by Chris’ betting rules,
Alice wins $8, while Bob wins $2. Therefore, Alice’s lucre is $6 since she wins $6
more than Bob. Similarly, if Bob’s pattern occurs first, then Bob wins $10, while
Alice wins $4. Therefore, Bob’s lucre is also $6. We can represent this info with the
ratio 6 : 6, where the left number represents Alice’s lucre, while the right represents

Bob’s lucre.

Being the astute observers that we are, we notice that the ratio 6 : 6 is the same ratio
that Conway’s Algorithm gives us when comparing the sequences HTT and THT,
except with an extra factor of 2 present on both sides (which thankfully doesn’t
affect the calculated odds). However, now that we've constructed this ratio from
Alice and Bob’s convoluted betting game, we can intuitively understand what the
ratio is telling us: because both patterns give the same expected lucre, each pattern
must be equally likely to occur first, since neither pattern rigs the betting returns in
their favour. If we check the probability table from section 7.2, we see that, indeed,
the patterns HTT and THT are equally likely to occur first.

If, instead, Alice bets on the pattern TT'T while Bob bets on the pattern HT'T,
then Alice’s lucre becomes $14 while Bob’s lucre becomes $2, giving us a lucre ratio
of 14 : 2. This time, it seems Alice has massively rigged the betting returns in
her favour: for every $14 she gains over Bob when her pattern occurs, she’ll only
make $2 less than Bob if Bob’s pattern occurs. If both their patterns were equally

likely to occur first, Alice would have a huge advantage! However, since the coin is
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fair, there’s no pattern that either player can choose so as to give them a monetary
advantage. Therefore, it must be the case that Alice’s pattern is less likely to occur
first so as to ensure she isn’t given a monetary advantage over Bob. Again referring

to the table in section 7.2, this is exactly what we see.

Symbolically, our findings can be summarised as follows: let Rx(Y') represent how
much money pattern Y would win if pattern X occurs first in the sequence of casino
flips. Then, if Alice’s chosen pattern is represented as A, and Bob’s chosen pattern

is represented as B, then Alice’s lucre can be represented as
Ra(4) —Ra(B),
while Bob’s lucre can be represented as
Rp(B) — Rp(A).
Our lucre ratio is then represented as
Ra(A) = Ra(B) : Rp(B) — Rp(A).

From our reasoning above, whichever side has the lower number represents the
pattern that’s more likely to occur first. If we compare this form with Conway’s
Algorithm, we see that both are equivalent (except for the extra factor of 2 mentioned
previously). So, using our hypothetical gambling scenario with Alice and Bob, we

were able to derive an equivalent representation of Conway’s Algorithm.

Of course, none of this is a rigorous proof that Conway’s Algorithm is correct.?
However, after having considered Alice’s and Bob’s betting game, the intuition be-
hind Conway’s Algorithm should now be clear. The leading numbers used in the
algorithm are just a tool used to quantify the supposed “advantage” one pattern
could have over another. In Alice’s and Bob’s case, those leading numbers corre-
spond to expected profits for each player. Unfortunately for Alice and Bob, those
same expected profits also ensure that neither can expect to have a financial advan-
tage over the other. It seems they’ll have to prove their worth to each other some

other way.

8. NONTRANSITIVITY IN THE REAL WORLD

After having become familiar with a handful of nontransitive games, we may wonder
whether there are other, less artificial examples of nontransitivity. For the original
dice game introduced in section 3, it initially seemed obvious that our “power”
relationship between the dice should be transitive, and yet it wasn’t. Are there

2T Again, see pages 401 to 410 of Graham et al. [2011] for a more formal proof of Conway’s Algo-
rithm.
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any situations in our lives where we assume a specific relationship to be transitive

without having any real reason for assuming so?

It turns out, perhaps unnervingly, that there are several such instances where tran-

sitivity is assumed.

One of the most important places where we tend to rank things are in elections.
There are many, many different election systems around the world, but the general
process is always the same: rank a set of candidates from most favourable to least
favourable, and choose the most favourable candidates for whatever position the

election is for.

Let’s consider a population of voters where each voter has their own particular
ranking for each candidate. For instance, if three major candidates are running
for office—Mr. Bat (=), Ms. Email (%), and Dr. Skull (&)—then one voter’s

candidate ranking may look like
-~ -~ f - B

where this voter prefers Mr. Bat to Ms. Email, and prefers Ms. Email to Dr. Skull.
Let’s imagine three hypothetical voters, say A, B, and C. Their candidate rankings

are given as follows:

A: = = B = B
B: B = = -~
C: 2 - 8 > =

Clearly, if each voter voted solely for their top candidate, there would be a tie.
However, let’s say that voters A, B, and C' are instead voting on a subset of possible
candidates. Maybe Mr. Bat and Ms. Email are facing off at a debate, and our
voters must choose which candidate they prefer from the two that are debating. In
this case, the candidate rankings for each voter change slightly since Dr. Skull isn’t

a potential candidate in this scenario:

A:*»@»E, A: = = B
B:ﬁ>*>$,:>3:*>$,
C: % » F = C: B > -

When ranking exclusively Mr. Bat and Ms. Email, Mr. Bat would win the public
vote 2:1. Similarly, if Ms. Email and Dr. Skull were debating,

A: = = B - B A: B - 8
B: B -~ = -~ ® — B: 8 - ®
C: B = B - = C: BB w

g,
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so Ms. Email would win the public vote 2:1. Finally, if Dr. Skull and Mr. Bat
debated,

A: = = # - B A: = = B
B: B -~ = - ¥# — B: & - =
C: ¥ = ;9; e o C: ;@4 - e

so Dr. Skull would win the public vote 2:1. Summarising, we see that, for pairwise
comparisons, = >~ 88, % >~ B and B >~ =e. This means

- - B e

Once again, nontransitivity appears. The order in which candidates are paired for
debates completely determines which candidate can win the public’s support! This
situation is known as the Condorcet Paradox, named after Marquis de Condorcet
who first described such a situation in the 1700s. Whether one uses a single-vote
plurality system or a ranked ballot, the Condorcet Paradox can occur.?

The Condorcet Paradox has pretty striking implications for elections, mainly that
the candidate who manages to receive the most votes isn’t necessarily the obvious,
undisputed preference of the entire voting body. As we saw above, the way in which
an election is conducted can have as much an effect on the election’s outcome as the

popularity of the candidates themselves.

In fact, in the most extreme case, the way in which the election is conducted can
entirely decide the outcome of the election! The first two theorems of Saari [1995]
(pages 42 and 45) say that, given the right voter preferences, it’s possible to have any
election behaviour we want for any subset of candidates we choose.? In essence,
what this means is that the voters’ preferences applied to a particular subset of
candidates in an election cannot necessarily be used to determine anything about
voter preferences applied to a different subset. For instance, if, after tallying up the

preferences of an entire voting population, we found that

-~ - - B

28For more on the Condorcet Paradox, see pages 298-299 of Gardner [2001] for a brief history of
the paradox and its consequences for creating voting systems.

29The theorems make use of an analogy between the structures of voting preferences and chaotic
dynamical systems (such as the orbits generated by repeatedly applying Newton’s Method to points
on a polynomial curve). Because of this, the exact wording of the theorems cannot be replicated
here unless a considerable amount of time is spent building up the ideas and terminology used
within Saari [1995]. Instead, we choose to paraphrase the theorems in a way that’s compatible
with this project. The interested reader is encouraged to read Saari [1995] for the motivation
leading to these theorems.
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it’s entirely possible that, when tallying up the voters’ preferences on subsets of
these candidates, we find that

2w B and B -2

even though these preferences seem contradictory. Underlying all this confusion is,
once again, the false assumption that the preferences of voters should be transitive.
Our examples show, however, that under certain conditions, voter preferences can

indeed be nontransitive.

These examples only deal with three candidates total, so there are only so many
ways to create apparent “paradoxes” in these rankings. However, the theorems in
Saari [1995] apply just as well to scenarios with over three candidates. In these cases,
because a greater number of candidate subsets are possible, the election behaviour

can get much more erratic and unpredictable.

Moving away from elections, the apparent nontransitivity of preferences has implica-
tions for any area of our lives where things need to be ranked based on some criteria.
As an example, say we work for some sort of marketing firm, and we need to deter-
mine how a particular population would rank a set of three subscription services.*’
It’s (naively) assumed by our managers that there should exist a single, “most at-
tractive” subscription service, and it’s this subscription we're tasked to find. Let
A represent the percentage of our population that prefers the first subscription, B
the corresponding percentage for the second subscription, and likewise for C'. When

asking consumers to rank between only the first two subscriptions, we see that
A=0.68 B=0.32.
However, when asking consumers to rank all three subscriptions, we find that
A=0.16, B=0.84, C=0.

Once again, preferences applied to one subset of objects don’t necessarily give any
information about preferences applied to other subsets. Our consumers’ preferences
for the first and second subscriptions completely swap when we introduce a third
subscription for them to consider. How do we determine which subscription to report

to our managers as the “most attractive”?

Compare this situation to our friend’s dice game. The power ranking of the dice
changes depending on how many dice each player is rolling. Is it not reasonable,
then, that other rankings are subject to change depending on how many objects are

being considered?

30This example was adopted from Klimenko [2015]. The example, however, is based off of real
data!
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Indeed, Klimenko argues in page 4385 of Klimenko [2015] that “a real buyer in
the real world is likely to have a[n] intransitive set of preferences”, where adding
additional objects to a ranking “provides us with additional information that makes

[different options] more attractive”.

This human tendency towards nontransitivity can even affect our ability to make

emergency decisions. Consider the following safety regulations:3!

During an emergency situation:

(1) Leadership: if a manager is present, they should lead and organise site

personnel to contain the cause of emergency.
(2) Safety:

(a) the manager and personnel stay on site during emergency if there is no

immediate danger to personnel, but

(b) personnel must be evacuated whenever there is a significant danger to

personnel.

Following these regulations, a manager has several factors to consider when deciding
on what to do in the case of an emergency. Thus, it’s likely that a manager may
want to compare several possible actions to see which one seems the most desir-
able. Consider the following three actions a manager could take in the case of an

emergency fire:
A) Evacuating personnel and abandoning the site.
B) Organising personnel to monitor the situation on site.
C) Organising personnel to contain and extinguish the fire.

If regulation 1 is considered the most important, then action C should be chosen to
B as the manager is expected to take action to contain the source of the emergency.
If one considers regulation 2a as the most important, then action B should be chosen
over A since monitoring a fire won’t cause immediate harm to anyone on site. If
regulation 2b is considered the most important, then action A should be chosen over
C since attempting to quell a fire could potentially cause harm to on-site personnel.

From these considerations, we find that

C>B>A>C,

31T hese example safety regulations are adapted from Klimenko [2015].
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where the notation X > Y represents action X being favourable to action Y. From
the relation above, we see no single course of action is obviously better than the rest.
Nontransitivity rears its head once again. Not only does nontransitivity prevent us
from easily ranking sets of objects, but it also prevents us from easily deciding on an
action given a set list of possibilities. Section 4 of Klimenko [2015] provides another
great example of nontransitivity manifesting in human behaviour, this time with

respect to choosing actions in light of particular laws.

However paradoxical it may seem, nontransitivity is an innate part of human be-
haviour and decision making, as the previous examples demonstrate. Unnervingly,

the natural world is just as prone to nontransitivity as we are.

Consider the set of three circles in figure 14. If we look at the black ring, we notice
that it’s completely under the slate (dark grey) ring. Similarly, the slate ring is
completely under the grey (light grey) ring. However, unexpectedly, the grey ring is
completely under the black ring. Symbolically, if we use the “<” symbol to represent

one ring being under another, then we have that
Black < Slate < Grey < Black.
Even physical space can display nontransitivity.

This configuration of rings is known as the Borromean rings. It represents the
simplest possible Brunnian link, where if any one of the rings are removed, the other
two rings can be pulled free of each other. However, with all three rings present,
the rings are linked together. If we were to try and make the Borromean rings
using perfectly circular rings as in the figure above,*? we’d find that it’s not actually

32Just pretend they’re perfectly circular. The author is incapable of drawing perfect circles with a
mouse.

FIGURE 14. A representation of the Borromean rings.
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FiGUure 15. “Knot Monkey Fist” by Tortillovsky. Licensed under
CC BY-SA 3.0 (http://creativecommons.org/licenses /by-sa/3.0/), via
Wikimedia Commons. Desaturated and posterised to ten colours.

possible. As stated in Lamb [2016], in order to construct a set of loops that mimic
the Borromean rings in our three-dimensional space, we must use other shapes, such
as ellipses or warped circles. One common way to construct the Borromean rings
is by tying a monkey’s fist knot. Without any of the three triple-rope rings in a
monkey’s fist, the entire knot falls apart. A structure similar to the Borromean
rings is the braid. For the usual three-strand braid people tie their hair into, when
comparing any two strands, one will always be above the other. However, all three

strands together keep the braid interlinked.

Thus, even the space we reside in is prone to nontransitivity. Not only that, but the
creatures that inhabit that space also can’t seem to resist nontransitivity— human

or otherwise.

Consider the Lotka-Volterra population model. If we have two species we’d like to
model the population of, and one of the species is assumed to prey on the other, we
can model the change of these two populations over time using a system of differential
equations. If R represents the number of rabbits in an environment, and F' represents
the number of foxes in the environment, then the Lotka-Volterra population model

says that the two quantities should change according to the following two differential

equations:
d
—R =a,R —bRF,
dt
F
d— = cRF — a;F,

dt
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where ay, a,, b, and c are all positive constants adjusted to match whatever scenario

is being modelled.

From these two equations, we can gleam that the rabbit population benefits from
the environment. The more rabbits there are, the more rabbits that are begat,
so without any external forces, the rabbits are able to take as much as they need
from the environment in order to thrive (as represented by the term a,R in the
equation controlling the change in rabbit population). As well, foxes benefit from
the rabbit population. The more rabbits there are, the more foxes that are begat
(as represented by the term c¢RF). However, the foxes do not benefit from the
environment like the rabbits do. The more foxes there are, the less foxes that are
begat (as represented by the terms —bRF and —asF). So, in a slight abuse of
language, we could say that the environment benefits from the foxes, not the other

way around.

If the symbol “>" is used to represent one object benefitting from another, then the

above analysis of the Lotka-Volterra model shows that
Environment > Foxes > Rabbits = Environment.

Yet again, nontransitivity arises,® this time in an environment completely separate

from human constructs.

This is far from the only example. For instance, it’s been observed that the mat-
ing habits of particular species of side-blotched lizards form a nontransitive cycle:
a habit is preferred when compared to a specific habit, but is subpar when com-
pared to another. As Kristin Leutwyler relays in Leutwyler [2000], “each morph
successfully used a different tactic to exploit weaknesses of another strategy and a
morph’s success depended on the close proximity of a vulnerable alternative strat-
egy”, meaning the nature of the competition in the lizards’ environment “promote|d]
conditions that favor[ed] each morph, and thus preserve[d] all three strategies of the
rock-paper-scissors cycle in the long term”. In other words, attempting to rank the
lizards’ mating strategies from best to worst results in the same sort of nontransitive

cycle we see in Rock, Paper, Scissors.

From these examples, it’s now clear to us that nontransitivity pervades the entirety
of our world. Not only does it appear in several of our games, institutions, and
thoughts, but also in the processes that surround us, free from any artificial con-
structs we may impose. It seems, then, that assuming transitivity is not only wrong
in some cases, but entirely irrational. There are many things in our world that

33Section 5 of Klimenko [2015] goes into further detail regarding the nontransitivity that arises in
this population model.
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evade a simple placement on a hierarchy. In the case of our friend’s games, a more
careful analysis is needed—one other than determining the overall “best” die—to
fully appreciate the structures at play. For the nontransitive scenarios explored
above, a more nuanced approach is required—one other than placing things in a

hierarchy—in order to properly understand what’s going on.

9. CONCLUSION

Starting with a seemingly innocuous analysis of a strange dice game, we discovered
that its underlying nontransitive structure shares many properties with the structure
of coin flip sequences, election ordering, and even population dynamics. Instead of
having a hierarchy-like structure, these scenarios have a structure akin to Rock,
Paper, Scissors, where the “power” of individual objects is not an absolute measure,

but rather a relative measure on pairs or groups of objects.

The apparent strangeness of nontransitive structure almost always comes from a false
assumption of transitivity. For our friend’s dice game, the assumption of transitivity
gave our friend a strategical advantage against us. For other scenarios, such as those
described in section 8, assuming transitivity completely throws off our understanding

and intuition.

Understanding nontransitivity in the context of our friend’s games may seem a
bit separated from reality. After all, the games are meant to fool us. They’re
created specifically to force nontransitive cycles to occur. However, understanding
nontransitivity in the context of consequence-free games®! helps better equip us
for the cases where nontransitivity does have consequences. While the process of
analysing dice rolls is quite different from the process of observing lizard species,
we’ve seen that the relationships between pairs of dice and between pairs of lizard
species are surprisingly similar, and thus understanding one scenario should give us

tools (or, at the very least, ideas) for working with the other.

Ultimately, though, just being aware of nontransitivity is what proves to be the most
useful. By understanding that certain relations need not be transitive, we can begin
to explore other possible structures for any given situation. As Klimenko states
on page 4366 of Klimenko [2015], “[bJoth transitive and [non]transitive effects are
common and need to be investigated irrespective of what we tend to call ‘rational’
or ‘irrational’”. After having seen nontransitivity in several places throughout this
project, we can hopefully see that it’s a structure worth considering. As well, we've
hopefully come to appreciate nontransitivity as an innate part of many systems and

environments, and not as some niche academic curiosity.

34Well, the games are only consequence-free if we ignore the loss of our dignity to our friend.
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10. IMAGE CREDITS

The following is a list of image credits for the public domain images used throughout
this project. All non-public domain images used are credited with the appropriate
attribution where used. All images created by the author, and any edited images
used in this project, were created in GIMP 2.10.34.

e “A Kangaroo on a Grass Field in an Enclosure” by 8% & from Pexels.

e “Close-Up Shot of an Otter” by Ellie Burgin from Pexels.

e “Selective Focus Photography of Brown Squirrel” by Rod Dion from Pexels.
e “Woman Raising Her Hand” by EKATERINA BOLOVTSOVA from Pexels.
e “Hand Peace Sign” by Kevin Malik from Pexels.

e “Close-up of a Clenched Fist” by Kevin Malik from Pexels.

e “Orange Cube” by Magda Ehlers from Pexels.

e “Alice and Bob Bet It All” by Jeremy Chevere. This image was commissioned

for use in this project.

e “Cute Kitten hiding behind a Pillow” by Francesco Ungaro from Pexels.
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